Logical Qubits (LogiQ)

Program Manager

Brad Blakestad

Program Information

IARPA-BAA-15-10

The LogiQ Program seeks to overcome the limitations of current multi-qubit systems by building a logical qubit from a number of imperfect physical qubits. LogiQ envisions that program success will require a multi-disciplinary approach that increases the fidelity of quantum gates, state preparation, and qubit readout; improves classical control; implements active quantum feedback; has the ability to reset and reuse qubits; and performs further system improvements.

Additionally, LogiQ seeks a modular architecture design of two coupled logical qubits that creates a flexible and feasible path to larger systems. Modular designs facilitate the incorporation of next-generation advances with minimal constraints, while maintaining or improving performance.

Performers (Prime Contractors)

Delft University of Technology; Duke University; IBM - T.J. Watson Research Center; University of Innsbruck

Related Program(s)

 

The Logical Qubits (LogiQ) Program seeks to overcome the limitations of current multi-qubit systems, described in the previous paragraph, by building a logical qubit from a number of imperfect physical qubits.  LogiQ envisions that program success will require a multi-disciplinary approach that increases the fidelity of quantum gates, state preparation, and qubit readout; improves classical control; implements active quantum feedback; has the ability to reset and reuse qubits; and performs further system improvements.