Unique Qualifications & Capabilities:

- Quantum Process Characterization
 - Gate Set Tomography (GST)
 - Randomized Benchmarking
 - Mutually Unbiased Bases
 - Error bars and statistics
 - Compressive sensing

- Multi-Qubit Simulations & Choreography
 - Dynamically, actively controlled
 - Open-system, chain-boson model
 - Markovian and non-Markovian

- Selected References
 - March Meeting T38.00005 (2015)
 - JMP, 50, 012107 (2009)
 - PRB, 78, 014302 (2008)
 - PRL, 90, 087901 (2003)

We are interested in supporting:

- Full characterization of multi-qubit errors
 - Experiment design and statistics
 - Maximum likelihood with error bars
 - Including correlations and crosstalk

- Simulations to understand and fix errors
 - Open-system master equations
 - Time dependent, non-Markovian
 - Dynamically controlled, corrected

- Computer Aided Design & Choreography
 - Higher fidelity physical qubits
 - Open-loop qubit control during ops
 - Closed-loop feedback scheduling

Areas of interest:

- Non-Markovian correlations, crosstalk
 - Boson exchange
 - Residual entanglement
 - Active resets

- Protective collective behavior
 - Sub- and/or super-radiance
 - Meta-stable logical states

- Quantum error correction & control
 - Open loop
 - Active, closed-loop
 - Autonomous

Contact Us:
Andrew Skinner, Ph.D.
Chief Research Scientist
Altamira Technologies Corporation
andrew.skinner@altamiracorp.com
703-813-2144

Figure: GST on the Bloch Sphere

Gates: \(G_k = \{\text{Null, } G_x, G_y, G_z, \text{ Idle}\} \)
Fiducials: \(F_i = \{\text{Null, } G_x, G_y, G_x^2, G_y^2, G_y^3\} \)

\[\rho = |0\rangle \langle 0| \]
\[\rho_x = E_2 \]
\[\rho_y = E_3 \]
\[\rho_z = E_6 \]
\[\rho_2 = E_5 \]
\[\rho_4 = E_4 \]

Tőmos: \(D_{jk} = \text{Tr} [E_i (G_k (F_j (\rho)))] = \langle \langle E_i | G_k | \rho_j \rangle \rangle \)

\(\langle \langle E_i | G_k^n | \rho_j \rangle \rangle, \langle \langle E_i | (G_k G_l)^n | \rho_j \rangle \rangle, \langle \langle E_i | (G_k G_m)^n | \rho_j \rangle \rangle \)