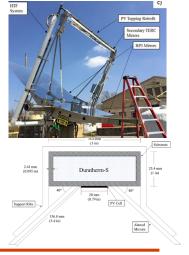
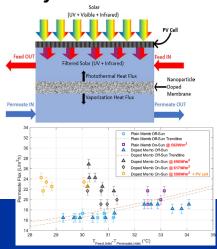

SOLSTICE Proposers Day

Our Prior Work

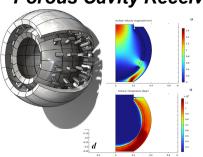

Spectral Splitting Hybrids

- Led 2 ARPA-E projects on spectral splitting and spectral absorbing hybrid PV-thermal collectors
- Culminated in large scale
 experimental demonstrations in first-of-kind collectors
- Developed novel optical, thermal, and hybrid simulations
- Participated in Energy i-Corps



PV Topping Retrofit

- ARPA-E and industry supported project to integrate multi-junction PV into existing linear concentrators
- Design custom topping CPV receiver to increase flux and cool cells
- Demonstrated 2x increase in flux to PV cells.
- Demonstrated potential for <\$0.03/kWh for multijunction cells in terrestrial application



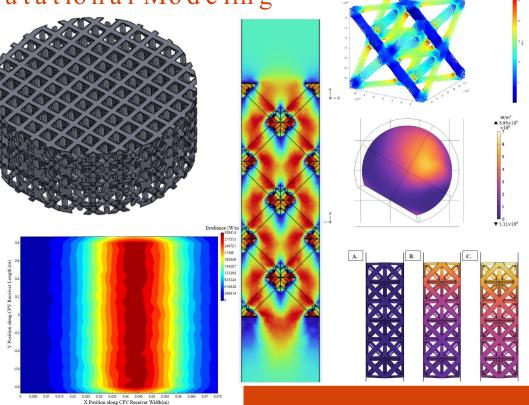
Hybrid PV + Desalination

- Only known PV + desalination system tested on sun
- Synthesized and characterized nanoparticle doped absorbing membranes
- Demonstrated increased permeate flux and simultaneous electrical energy production.

Porous Cavity Receiver

Designed cavity receiver to achieve >1000 C outlet air temperature.

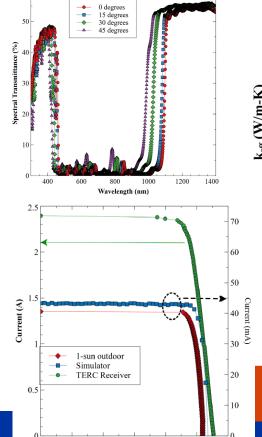
- Synthesized porous additively manufactured receiver surface to maximize heat transfer and minimize weight.
- Developed transient thermomechanical simulation for startup and shutdown


SOLSTICE

- 1. Wingert et al., Solar Energy, 2020
- 2. Otanicar et al., Applied Energy, 2018
- Otanicar et al., Applied Energy, 2020
 Sanchez et al. Applied Energy, 2021

Todd Otanicar, Boise State University

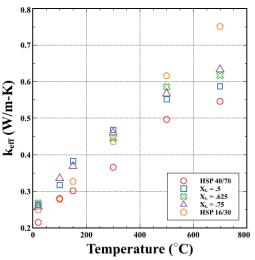
Our Capabilities - Computational Modeling


- Multiscale and Multiphysics modeling
 - Thermaltransport
 - \circ CFD
 - o Structural
 - Transient and steady state
 - Ray tracing
- Custom built multiple novel solar hybrid techno-economic analyses
- Focused on manufacturability, weight, and mechanical lifetime

SOLSTICE

Our Capabilities - Fabrication & Characterization

- UV-VIS-NIR + FTIR spectrophotom eters for optical properties
- Transient plane source therm al conductivity (up to 800 C)
- I-V Tracers
- Muffle and Tube Furnaces for high temperatures and different gas pressures
- Spin, Dip, and Blade coaters
- OpenAdditive Panda Metal3D printer
- Outdoor dish concentrator (3 m² aperture area)
- Dataloggers, therm ocouples, etc.

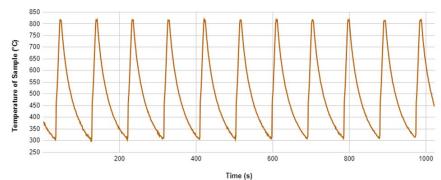


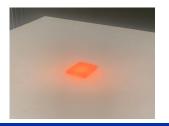
1.5

Voltage (V)

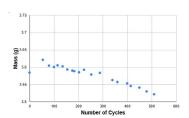
2.5

0.5


SOLSTICE


Todd Otanicar, Boise State University

Our Capabilities – High Flux Simulator


Highly concentrated UV/Visible/IR radiation, >600 kW/m² on ~50 cm² spot.

• Shutter to simulate thermal cycling

SOLSTICE