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Dataset Details 

Dataset Title: SaikoCTF: In-Person EkoParty Conference 

Dataset Citation: ASCEND Team (author list TBD). (2025). Adaptive Security through 

Cognitive Exploitation for Defense (ASCEND), Study SaikoCTF: In-Person 

EkoParty Conference [Data set]. SRI, Menlo Park, California, USA. DOI TBD. 

Data Format: Test range and physio raw Zip archives; 

Clean binary, ASCII text, and CSV files; 

Cooked CSV files 

Data Size: Raw: 224 GB 

Clean: 362 GB 

Cooked: TBD GB 

Dates & Duration: Nov, 13 – Nov, 15, 2025 

2.5 hours per participant 

Time Zone: UTC 

How to access 

dataset: 

ascend.sri.com (not online yet) 

Point of contact for 

data questions: 

Dr. Grit Denker: grit.denker@sri.com  

Laura Tinnel: laura.tinnel@sri.com 

ascend.sri.com 

Description of Scenario 

Objectives 

The overall objective of this study is to determine how cyber attackers change strategy, behavior 

and physiologic response when presented with different cyber-attack countermeasures.  ASCEND 

defines Cognitive Vulnerabilities (CogVulns) as decision-making and cognitive biases plus attacker’s 

culture, cognitive-emotional state, personality traits and cyber-psychological characteristics. 

This study targets Anchoring Bias (AB) Bias, Confirmation Bias (CB), and two aspects of Socio-

Cultural Bias (SCB), namely Age Bias (SCB-AB) and Gender Bias (SCB-GB).  

We conducted experiments using targeted challenges in a capture-the-flag (CTF) event to simulate 

real-world adversarial behavior and attendees of the Ekoparty Security Conference (EkoParty) in 

Buenos Aires, Argentina as proxy for hackers. 

 

Experiment Description 

The study begins with consenting, online individual differences measures (IDM) (e.g., 

demographics, personality) and an online skill-screener provisioned through pwn.college. At the 

beginning and the end of the study, participants answer a questionnaire about their mental state.  
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Participants can opt into wearing sensors that detect their brainwaves, heart rate, sweat and 

respirations while they sit at a table using a laptop to participate in SaikoCTF. Before a participant 

who opted for physiological sensors starts the CTF cyber-attack challenges, they complete a physio-

sensor calibration session to determine their individual baseline values.  

Participants are pseudo-randomly assigned to be in one of two groups (1 and 2). SaikoCTF uses a 

within-subjects design. Each challenge as a control (no CogVuln trigger present) and a treatment 

(CogVuln trigger present) version. There are two CTF challenges (A/B versions) for each CogVuln, 

thus a total of four challenges per CogVuln (version A control, version A treatment, version B 

control, version B treatment). The A/B pairs have similar objectives and target the same CogVuln 

but have enough differences to control for human learning. The order in which control and 

treatment versions of each CTF challenge is presented is counter-balanced between groups 1 and 

2 to control for order of conditions. After each CTF challenge, participants answer additional IDM 

and CogVuln measures (questionnaires and surveys) to assess their biases, personality traits, 

cultural values, cognitive-emotional and cyber-psychological attributes. CTF challenges are time 

limited.  

CTF challenges are implemented in the SimSpace Cyber Range Platform (simspace.com/platform). 

For the three CogVulns tested in this study there are six, targeted CTF challenges, each particularly 

designed to elicit the effectiveness of one CogVuln trigger deployed in the treatment version of the 

challenge. Furthermore, cyber behavior data is collected to evaluate hypothesized CogVuln sensors 

in relation to the established methods (IDMs and Bias measures) during analysis.  

The CTF challenges for AB target the numeric priming facet of AB. Participants are told to find the 

target server and port on the network. In the A version of the challenge, participants are given 

access to an administrator workstation with an admin password that ends in “44” and there is only 

one port that contains the number 4.  In the B version of the challenge, the participant in the 

treatment groups are given access to an administrator’s workstation that has the number “9” in its 

password and there is only one IP address that contains the number 9.  

The CTF challenges for CB are testing whether susceptible participants who are initially shown 

evidence of a network vulnerability and script will continuously attempt to exploit that vector even if 

a simpler and easier path exists out of sight. In the A version of the CB challenge participants are 

given network access and login credentials to the target machine which has a directory with 

potential attack scripts to try. The target machine has the root login credentials stored in a hidden 

location that linpeas can find. Participants must escalate privileges to get the flag that is only 

readable by root. In the treatment version, the participants are given a linpeas output that indicates 

dirtycow vulnerability, but linpeas was disrupted halfway through and is incomplete. The goal is to 

test whether susceptible participants will assume the output of linpeas to be correct and attempt 
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multiple dirtycow exploits, rather than re-running linpeas to confirm the results. In the B version of 

the CB challenge, participants are given a file that contains the output of an nmap scan showing 

port 80/http open and port 445/smb open with port 80 being vulnerable to a number of Apache 

2.4.49 exploits. The goal is to test whether susceptible participant will continue to scan and attack 

the web server using the provided vulnerability scripts rather than re-scanning the box to see that 

SMB is enabled and allows anonymous login.  

The CTF challenge for SCB-AG presents participants with a grid of four AI-generated photos and 

usernames of males in their 30’s and 40’s and two photos and usernames of males in their 60s. 

The goal is to test whether participants pick a young or old profile over other profiles or positional 

bias.  

The CTF challenge for SCB-GB presents participants with a grid of ten AI-generated photos and 

usernames common for white persons ages 30-44 (to factor out race and age bias) and two female 

photos and usernames. The goal is to test whether participants pick a female over male bias or 

positional bias.  

Experimental Results  

Analysis of cyber data and physiological data discovered effectiveness for CogVuln triggers.  

Here is the summary of preliminary results for CogVuln Triggers.  

AB: Analysis is underway  

CB: Analysis is underway 

SCB: We found no significance in the distribution of choosing a biased or non-biased position. 

Modeling the overall positional choices by participants, we found strong positional bias (e.g., early 

attempts were more significantly chosen near top left grid locations) and potentially for choices 

near the swapper position. In SCB-GB we saw a near significant effect (p < 0.057) of the 

multinomial logistic regression for the participants choosing a location adjacent to the ‘biased’ or 

‘hot’ position being swapped between treatment and control. This suggests we may be eliciting a 

bias towards the position near the biased position (one to the right).  

LA, RB, SCB: Analysis of the physio data showed that across many (~50%) of the standard 

physiological measures, we have observed an effect size (Cohen’s d) above 0.3. This occurred even 

for triggers that did not manifest cyber behavior effects. 

The analysis of CogVuln Sensors is underway. 

 

Cyber Environment 

The CTF challenges are carefully designed to target a specific CogVuln (or facet thereof) and test a 

specific CogVuln Trigger. To achieve this, the CTF challenges are tailored, and the cyber range 

comprises a small set of virtual machines implemented in the SimSpace Cyber Range Platform.  

The CTF challenge network topology for CB Version B, SCB-AG and SCB-GB challenges is the same 
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and illustrated below (left-most topology). The CTF challenge network topology for CB Version B is 

shown below (middle topology). 

 
  

The CTF challenge network topology for AB challenge Version A is shown above (right most 

topology). The network topology for AB challenge Version B is show below and is the same in 

principle as Version A, but it differs in IP addresses. 
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DATA 

DATA SOURCES 

Primary Data Sources 

Collected directly from the experiment environment. 

Category Data Source Examples of Select Data Features 

Physio Data Wearable Sensing DSI-

24, w/ external heart 

rate, GSR, and 

Respiration sensor, N-

back test results. 

Electroencephalogram (EEG), 

electrocardiogram (ECG), galvanic skin 

response (GSR), and respiration are 

correlated with a timestamped actions taken 

during each CTF challenge. 

 

 

 

 

 

 

Survey/Questionnaires 

Demographics Age, gender, country of origin, and more 

Individual Difference 

Measures  

Big Five (BFI-2) Personality (References 1-20); 

Depression, Anxiety, Stress  Scales (DASS-21) 

(References 21-32); Dark Triad Traits (DTT) 

(References 33-41); Portrait Values 

Questionnaire (TWIVI-20) (References 42-45); 

Need for Closure Scale (NFC) (References 46-

51); Hacker Overclaiming (References 52-61); 

English Proficiency Test (C-Test) (References 

62-65); Cognitive Reflection Test (CRT-3) 

(References 66-82); General Risk Propensity 

Scale (GRiPS) (References 83-91); Stress 

States for Human Performance (DSSQ-3 Pre 

and Post) (References 92-96); Motion 

Sickness Severity Scale (MSSS) (References 

97-100) 

 

 

 

 

CogVuln Established 

Measures  

 

 

 

CB Evaluation/Weighing of Facts/Evidence (EWE) 

and Evaluation/Weighing of Questions (EWQ) 

(References 101-112) 

AB Comparative Judgement Anchor (CJA) 

(References 113-117); Numerical Priming 

Anchor (NPA) (References 118-121); Self-

Generated Anchor (SGA) (References 122-

126); Selective Accessibility Method (SAM) 

(References 127-129) 

SCB Fundamental Attribution Error (FAE) 

(References 130-139); Country of Origin 
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(COO) Bias (References 140-143); Positive 

Illusion (PI) Bias & Knowledge Projection Bias 

(References 144-157); 

LA Sunk Cost (Gov 

mandated) 

ADMC Sunk Cost – 3 items (References 159-

163) 

Cyber User Data Kali Linux (participant workstation) Instrumentation 

• Screen capture Full session video capture of participant 

desktop 

• Terminal logger 

(using script 

command) 

All terminal commands entered and 

responses provided by the system. Captures 

stdin and stdout plus timing data. This data 

includes all activity conducted in remote ssh 

sessions. 

• Keylogger  Delta time key press events in all applications 

(extract rates, commands) 

• Click logger Mouse clicks 

• Cursor logger Movements and actions of mouse cursor 

• Clipboard logger Copies of clipboard contents 

• Menu logger Command invocations from menu bar 

• Web logger Browser mouse clicks mapped to tabs, plus 

keys pressed 

• Snoopy System processes started 

Cyber User and Server 

Data  

Target System Syslog 

• Journal  All system events, including logins 

• auth.log Successful and failed login attempts via 

console, terminal, and ssh 

• nginx/access.log 

• php.log 

Web server logs, including pages accessed, 

data served (including flags) 

• Roundcube.log Successful and failed email login attempts by 

account 

Cyber Network Data 

Kali Linux VM, 

tcpdump: PCAP full 

packet capture data  

Timestamped network communication 

packets, including payloads. Where possible, 

unencrypted communications were used to 

enable extraction of remote logins and 

information accesses. 
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Derivative Data Sets 

Datasets created from aggregating, analyzing, curating, and labeling the source data. 

Category Data Source Examples of Select Data Features 

Metadata and 

Summarization 

1. Experiment control 

data (e.g., event 

name, de-identified 

participant IDs P#s, 

challenge name, 

treatment vs control 

group); 

2. Raw cyber data 

extracted from 

SimSpace range.  

Automated scripts uncompress and restructure data 

into form suitable for analysis, extracts screen video 

capture for human analysis, summarizes and creates 

metadata for use by humans and automated analysis 

tools. Also validates trigger presence/absence in 

treatment and control groups and flags errors for 

adjudication such as missing data, no user login into 

the SimSpace range, timestamp issues. 

Summarization automatically calculates and reports 

initial statistics.  

Example metadata: control treatment status per 

participant and challenge, CTF performance 

information (start/end times, flag posted?, flag time, 

forfeit time, leaderboard time and rank per 

challenge/event, total flags per event). 

Example summary data: Usable data sample (e.g., 

per challenge: Total# C/T, #C, #T), capture rates (all, 

C, T), mean capture time) 

IDM and 

CogVuln  STEN 

and Z scores 

 

1. IDM and CogVuln 

measures 

2. Experimental 

control data (e.g., 

event, P#) 

 

STEN and Z scores per participants for various facets 

of the investigated CogVulns as well as for IDMs (e.g., 

Worry_Pre/Post, Engage_Pre/Post, 

Distress_Pre/Post, CTest, GRIPS, CogReflect, 

Openness, Communication, and so on) 

CogVuln Sensor 

Data  

1. Cyber data (pcap, 

nginx, webserver logs, 

keylogger, terminal 

logger)  

2. Physio data 

Produces various CogVuln Sensor candidates of both 

individual cyber data and combinations of cyber data. 

Produces discrete measures (e.g., counts) and 

continues (e.g., rates) for various cyber data (e.g., 

commands, clicks, keystrokes). Produces also cyber 

timelines.  

Compares established methods with CogVuln sensors 

for SD.  

Produces metrics of cyber data with significant effect 

sized between C&T (e.g., Cohen’s d, Hedge’s g, p-

value) 
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Produces other metrics for cyber data thresholds that 

predict CogVuln (per established methods) with high 

f1, precision, recall and accuracy.  

Aligns physiological data with cyber data to detect 

significant deviations between C & T groups (e.g., p-

value, Cohen’s d, Hedge’s g) to identify cyber data 

that may be candidates for CogVuln Sensor 

CogVuln Trigger 

Data  

1. Cyber data 

2. Experimental 

control data (e.g., 

event, P#, C/T) 

3. CogVuln measures 

(STEN scores) 

Produces per event, participant, challenge, and C/T 

group,  the number of participants that chose biased 

(fell for CogVuln Trigger) vs unbiased path. Also 

produces several non-binary CogVulnTrigger metrics 

such as time on biased vs unbiased path, mean time 

between login tool invocation, average challenge 

response time or number of distinct login tools or 

configurations.  

Performance 

Data 

1. Metadata and 

summary 

 

Produces general performance measures such as 

avg_secs_to_flag. 

Combines demographics with leaderboard data (e.g., 

COO, region, CTF skill, age, gender, language skill, 

leaderboard rank) 

Physiological 

Data 

1. Physio data Extracts features such as heart rate and variability, 

tonic and phasic GSR measurements, respiration rate 

and amplitude 

 

RESEARCH  

Hypotheses 

The SaikoCTF ECSC dataset was used to answer the following hypotheses: 

[H1] CB: The hypothesis of the bias trigger is that A hacker who is initially shown evidence of a 

privilege escalation path will continuously attempt to exploit that vector even if a simpler and easier 

path exists just out of sight.    

[H2] AB: Participants who are susceptible and who are initially shown and engage with a number 

will be more likely to unconsciously select something containing that number when faced with 

multiple choices.  

[H3] SCB-GB: Participants with gender bias (against females) will choose to target females when 

they can only choose a single target.  
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[H4] SCB-AB: Participants with age bias (against older vs. younger) will prioritize targeting 

older/younger targets.  

[H5]: All challenges and CogVulns: Physio data and cognitive-emotional states derived from physio 

data correlate with CogVuln trigger effectiveness or supports identification of cyber surrogate 

data/measures for CogVuln Sensors. 

 

Publications 

List any relevant publications that were created to analyze or describe the above data.  

A Case Study on the Use of Representativeness Bias as a Defense Against Adversarial Cyber 

Threats (2025). B. Hitaj, G. Denker, L. Tinnel, J. Lawson, B. DeBruhl, G. McCain, D. Starink, M. 

McAnally, D. Aaron, N. Bunting, A. Fafard, & R. D. Roberts. Paper submitted to the 4th Workshop on 

Active Defense and Deception (ADnD), co-located with the 10th IEEE European Symposium on 

Security and Privacy. https://arxiv.org/abs/2504.20245. 

https://doi.org/10.48550/arXiv.2504.20245 

Hutcheson, T. L. & Raj, A. K. (August 2025, submitted) Autoencoding Coordinate Sequences from 

Psychophysiologic Signals. In Proceedings of 2025 IEEE Research and Applications of Photonics in 

Defense. IEEE  

 

Attachments 

1. Experimental Results Document: 2024-12-31-Experimental-Results.docx 

2. EkoParty Blank Surveys: EkoParty-BlankSurveys.pdf 

3. EkoParty Data Dictionary: EkoParty-DataDictionary.xlsx  

4. CTF challenges descriptions: TBD 

5. IDM and CogVuln Established Measures Score Cards: TBD 
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