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The big questions to be answered by simulations

▪ Which problems are amenable to quantum acceleration? 

▪ How can we predict quantum speedup potential? 

▪ Which architecture is best suited to realize quantum speedup? 

▪ What are the requirements on control and calibration?
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Picture source: Brooke, Bitko, Rosenbaum, Aeppli, Science (1999)
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▪ “Schrödinger” dynamics  
▪ Exponential complexity on classical hardware 

▪ Simulates the time evolution of a quantum system 

▪ Unitary evolution in the ground state: U-QA 
Kadowaki and Nishimori (1998) 

▪ Open systems dynamics using master equations: OS-QA 

▪ Quantum Monte Carlo dynamics (stochastic) 
▪ Classical algorithms with polynomial complexity 

▪ QMC samples the equilibrium thermal state of a quantum system 

▪ Typically based on path integral Monte Carlo simulations: QMC-QA 
Apolloni et al (1988), Santoro at al (2002) 

▪ Mean-field MC version using coherence but no entanglement: MC-QA 
Shin, Smolin, Smith, Vazirani, arXiv:1401.7087

3

Simulating quantum annealing
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▪ We are running into a big data problem: 
▪ 103 - 104 instances per problem size 
▪ 103 - 109 repetitions of annealing per problems 
▪ O(10) different system sizes 
▪ O(10) different annealing schedules 
▪ O(10) different annealing times 

▪ We perform more than O(1010) simulations 

▪ Job scheduling, launching, and data storage has to be 
automated to avoid wasting valuable time and resources 

▪ Our framework automates repetitive tasks and substantially 
decreases the time to obtain results on new problems, 
algorithms, hardware architectures or annealing strategies
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The case for a software framework
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▪ We build up our tools and hone our skills starting from small and 
specifically chosen problems, over medium sized random problems  
to full applications
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A three-tiered strategy

Small tailored problems 
learn the mechanisms of quantum enhancement

Medium sized engineered problems 
explore which random problems show quantum enhancement

Large scale application problems 
quantum enhancement  in applications
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The physics of quantum annealing



Hardness	Metric:	Density	of	QA	bottlenecks
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A growing number of exponentially small 
gaps appears inside the spin glass phase 

and dominate the hardness

Power law gap at spin glass 
phase transition

S. Knysh, arXiv:1506.08608 



Theory	of	dissipative	QA	on	linear	chains
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Linear	chains	or	trees	are	fundamental	
primitives	and	basis	for	all	problem	embedding

Speedup of open system QA 
compared to fully coherent annealing

V.Smelyanskiy, D. Venturelli et al. (2015)



More	NASA	Ames	projects
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❑ Baseline	QA	performance	established	for	scheduling	and	fault	
diagnostics	problems	

❑ Best	strategies	for	mapping	and	embedding	

❑ Hybrid	quantum-classical	optimizers	

❑ Develop	device	tuning	and	calibration	techniques	to	reduce	the	
effect	of	misspecification	errors.	

❑ Design	problems	to	unveil	and	evaluate	quantum	speedup	

❑ Identify	and	overcome	the	bottlenecks	of	quantum	annealing
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Quantum Monte Carlo annealing



||Matthias Troyer

▪ Early evidence for superiority of QA came from QMC simulations 
▪ Lower residual energies in simulated quantum annealing compared to  

simulated thermal annealing, but not for all models
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Simulated classical versus quantum annealing

Santoro et al, Science (2002) 

similar results by 
Matsuda, Nishimori, Katzgraber (2009) 

this is inconsistent with what we saw on D-Wave for 2D spin glasses!
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▪ Simulated annealing performs a Monte Carlo simulation 
▪ Sample random configurations according to their Boltzmann weights
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From classical to quantum Monte Carlo

Z = exp
s1,…,sN
∑ (−β Jij

i< j
∑ sis j )
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▪ SQA-QMC performs a quantum Monte Carlo simulation 
▪ Map quantum system to classical path integral 
▪ Sample random configurations according to their weights
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From classical to quantum Monte Carlo

Z = Tr exp(−βH ) ≠ exp
c
∑ (−βEc ) Z = Tr exp(−βH ) = Tr exp[(−ΔτH )
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▪ The behavior of a simulated quantum annealer depends strongly on 
discretization of imaginary time path integrals
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Time step dependence
Heim, Rønnow, Isakov, MT, Science (2015)
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▪ Use a large time step to get best performance
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Performance as a classical optimizer
Heim, Rønnow, Isakov, MT, Science (2015)
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▪ One should use infinitesimal time steps to make predictions for devices 
▪ Quantum annealing quickly finds low energy solution  
▪ But in this case ultimately scales  worse than simulated annealing
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Performance in the “physical” limit of zero time step
Heim, Rønnow, Isakov, MT, Science (2015)
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▪ QMC annealing can be performed in different ways 

▪ “Cheat” with large time steps in the path integral to use QMC as 
a quantum-inspired classical algorithm 

▪ Work in continuous time to mimic a physical quantum annealer 
and assess potential for quantum speedup
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Lessons learned for quantum annealing
Heim, Rønnow, Isakov, MT, Science (2015)
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▪ 2D spin glasses 
▪ Critical temperature Tc=0 
▪ Infinitesimally small temperature lets the system escape a local minimum 
▪ The barriers may be shallow and not amenable to quantum speedup 

▪ 3D spin glasses 
▪ Critical temperature Tc ≈ 1 
▪ Barriers are extensively high 
▪ But similar behavior 

▪ We need to engineer harder problems!
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Are quasi-2D spin glasses a bad choice?

Katzgraber et al, PRX (2014)
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Engineered random instances

Create tunable, sensitive probes for quantum enhancement.



Engineering harder instances

• Reduce the degeneracy with Sidon sets. Example:

• Find tunable instances:

• Study the distribution of  
the order parameter P(q).

• Many peaks means many  
metastable states (hard).

• More general: Post- & pre-processing:

• Multi-tier physics-based data filtering.

• Novel planting approaches.

• Extensive data mining.

Qij 2 {±1}

q

hard
easy

Yucesoy et al. PRL (2012)

P (q)

arXiv:1505.01545

Qij 2 {±5,±6,±7}



Example average success probability in %

Bimodal {±1} Uniform {±1,±2,±3,±4} Sidon

easier                harder   Statistical physics 
  is key in the design!

divided by 10!



Hardening random instances

• Algorithm to increase number of unique GS instances: 

• Assign bond couplings randomly

• If a spin has Z even neighbors, choose the last bond coupling such 
that the  local field is never zero for all possible spin configurations.

• Results: 

• 4 times more unique GS.
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Heavy tails … 
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▪ Time to solution varies hugely between instances 
▪ Quantum annealing seems to have more problems for high quantiles 

(hard instances)
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Look at more than the median (typical) scaling

Thermal annealing

QMC-QA (SQA)

D-Wave Two
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▪ Distribution of time to find a ground state has fat (power law) tails 
▪ Tails are fatter for quantum annealing than for thermal annealing
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Heavy tails
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D. Steiger et al, arXiv:1504.07991
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Annealing faster is better for hard problems

Hardest problem when 
running slow

Hardest problem when running fast. 

Speedup of 45’866 when running hardest problems faster: 
66.6 times faster needs 688 times less repetitions

D. Steiger et al, arXiv:1504.07991
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▪ A large fraction of “rare events” takes orders of magnitude longer than 
typical instances 

▪ Quantum annealing on chimera instances shows much fatter tails than 
simulated annealing. 

▪ Optimizing the annealing schedule, and especially the annealing time 
gives improvements by many orders of magnitude! 

▪ Slow (adiabatic) annealing can be sub-optimal. Much better performance 
on hard problem instances is seen when annealing faster 
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Watch the tails!
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 Sergei V. Isakov,1  Guglielmo Mazzola,2  Vadim N. Smelyanskiy,3
 Zhang Jiang,4  Sergio Boixo,3  Hartmut Neven,3  and Matthias Troyer2

But does QMC tell us anything about the real 
performance of a quantum annealer?

Mazzola, Troyer (ETHZ)
Isakov, Smelyanskiy, Boixo, Neven (Google)
Zhang Jiang (NASA)
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▪ Quantum adiabatic theorem  
  

▪ Open systems tunneling through a barrier 
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Scaling of annealing times in quantum annealing

t ∝ 1
Δmin
2

t ∝ε2 ∝ 1
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2
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S. Knysh, arXiv:1506.08608 
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Tunneling between two states of a ferromagnet
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“Theory of Quantum Annealing of an Ising Spin Glass”

Roman Martoňák,1,2 Giuseppe Santoro,3 Erio Tosatti,3,4 Roberto Car5

1 Swiss Centre for Scientific Computing, Manno, and ETH-Zürich, Physical Chemistry, Zürich, Switzerland
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3 International School for Advanced Studies (SISSA) and INFM (UdR SISSA), Trieste, Italy
4 International Center for Theoretical Physics (ICTP), P.O.Box 586, Trieste, Italy
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We include here, for the reader’s convenience, a few technical details on the Path Integral representa-
tion [1] of the Ising Spin Glass used to perform Quantum Annealing (QA).

The Edwards-Anderson Hamiltonian of the Ising spin glass reads

HEA = Ä
X

hiji

Jijõ
z
i õz

j . (1)

The spins occupy sites of a D-dimensional cubic lattice and õx
i ,õy

i ,õz
i are Pauli matrices corresponding

to a spin on lattice site i. Jij are the random (positive and negative) couplings between nearest
neighbours drawn from some prescribed distribution. The Hamiltonian (1) represents a frustrated
and extremely complex system and finding its ground state is a very hard computational problem.
Adding a transverse field Ä, which induces transitions between states " and # of a single spin, we
obtain the Hamiltonian of the Ising spin glass in transverse field

H = Ä
X

hiji

Jijõ
z
i õz

j Ä Ä
X

i

õx
i (2)

which is directly relevant to the experimental system of Brooke et al. [2]

In order to derive a path-integral representation of the the quantum spin glass model (2) we apply
to its canonical partition function the standard path integral methodology [1]. We write

H = U + K

U = Ä
X

hiji

Jijõ
z
i õz

j , K = ÄÄ
X

i

õx
i ,

where the terms U (potential energy) and K (kinetic energy) do not commute [K,U ] 6= 0. The
partition function Z at a temperature T (setting the Boltzmann constant kB = 1) can be written as

Z = Tr eÄH/T = Tr(eÄH/PT )P = Tr(eÄ(K+U)/PT )P

=
X

s1

. . .
X

sP

hs1|eÄ(K+U)/PT |s2ihs2|eÄ(K+U)/PT . . . |sP ihsP |eÄ(K+U)/PT |s1i .

Here sk = {sk
i } denotes a configuration of all the spins in k-th intermediate state, called Trotter

slice, and the last equality follows from insertions of the identity operator 1 =
P

sk

|skihsk|. So far

1

Supplemental Material to

“Theory of Quantum Annealing of an Ising Spin Glass”
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everything is exact. Now we apply the Trotter break-up formula eÄ(K+U)/PT ô eÄK/PT eÄU/PT which
neglects commutators of K and U [1], obtaining

Z ô ZP =
X

s1

. . .
X

sP

hs1|eÄK/PT eÄU/PT |s2ihs2| . . . eÄK/PT eÄU/PT |sP ihsP |eÄK/PT eÄU/PT |s1i ,

with an error proportional to the square of the Trotter break-up time, O(1/(PT )2) [1]. We need to
evaluate the expression hsk|eÄK/PT eÄU/PT |sk+1i, which is simply expressed as:

hsk|eÄK/PT eÄU/PT |sk+1i = hsk|eÄK/PT |sk+1ieÄU(sk+1)/PT (3)

since the potential energy U is diagonal in the chosen spin basis. The only non trivial term is therefore
the average of the kinetic term between two Trotter slices, hsk|eÄK/PT |sk+1i. Since spin operators
corresponding to diãerent sites commute [3], we can rewrite such a term as:

hsk|eÄK/PT |sk+1i = hsk| exp(
Ä

PT

NX

i=1

õx
i )|sk+1i =

NY

i=1

hsk
i | exp(

Ä
PT

õx
i )|sk+1
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where N is the number of lattice sites. From simple spin-1/2 algebra, [3] it’s easy to show that

h" |eaõ
x | "i = h# |eaõ

x | #i = cosh a

h" |eaõ
x | #i = h# |eaõ

x | "i = sinh a

which can be written as an Ising-like interaction (s, s0 now mean single spins)

hs|eaõ
x |s0i = CeBss0

with B = Ä 1
2 ln tanh a, and C2 = 1

2 sinh 2a. Collecting all pieces together, we get

hsk|eÄK/PT eÄU/PT |sk+1i = CNe(J?/PT )
P

i

sk

i

sk+1
i e

(1/PT )
P

hiji
J

ij
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where

J? = ÄPT

2
ln tanh

Ä
PT

> 0 (4)

C2 =
1
2

sinh
2Ä
PT

.

The J? term can be seen as a ferromagnetic Ising-like coupling between the Trotter replicas of the
same spin which are nearest neighbours (k and k + 1) along the Trotter dimension.

For the full partition function we thus finally get

Z ô ZP = CNP
X

s1

. . .
X

sP

eÄH
D+1/PT (5)
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PX
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A , (6)
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Tunneling determined from 
the time QMC needs to 
create an instanton.
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Scaling with system size 
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QMC: Γ = 0.7
exp=0.816(27)

ED: Γ = 0.7
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exp=0.682(24)

ED: Γ = 0.75
QMC: Γ = 0.8
exp=0.552(26)

ED: Γ = 0.8

Tunneling rate given by QMC scale with  ~ 
as in physical dynamics 

T = J/16
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Z = Tr e-βH K(x0;xM ) = 〈x0 | e
−βH | xM 〉
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Scaling with system size L
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By cutting open the trace in imaginary time we have a new algorithm, with a better scaling.

Γ=0.8
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Implications for quantum annealing

▪ QMC is often relevant for performance of a quantum annealer 
▪ Scaling is the same for Grover search type problems 
▪ Scaling is the same for tunneling through barrier in a ferromagnet 
▪ Scaling of QMC with open temporal boundary conditions has a quadratic 

speedup over QA for tunneling through barrier in a ferromagnet 

▪ When can QA outperform QMC? 
▪ QA has a large constant advantage over QMC 
▪ non-stoquastic driver Hamiltonians don’t have a QMC mapping and may be 

able to outperform stoquastic QA  
▪ QMC dynamics may have topological obstructions in some cases (Hastings 

and Freedman)
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▪ Simulations have been performed for three types of problems 
▪ small tailored instances (clusters, chains, …) 
▪ random instances engineered to enhance quantum enhancement potential 
▪ application problems 

▪ Software framework for simulations 
▪ developed a framework to efficiently perform many millions of simulations 
▪ implemented a portfolio of simulation algorithms and SOA optimizers 
▪ built a library of hard problem instances 

▪ QMC is a predictor for QA performance on a broad class of problems 
▪ QMC is seen to have same scaling as QA for tunneling through barrier 
▪ QMC as classical optimizer: use a large time step to cheat 
▪ QMC to mimic physical device: use continuous time or small time steps 

▪ Beware of the tails 
▪ Very fat power-law tails in quantum annealing 
▪ Fast instead of adiabatic annealing is advantageous for hard problems
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Summary


