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[ICS confirmed that, even considering our idealized Physical
Machine Descriptions (PMDs), quantum computers will spend
maost of their time doing error correction.

A way forward is to estimate the quantum resources needed How can we estimate how big and fast a quantum computer
and time to completion for algorithms of interest. would need to be in order to do anything useful?

* Pick a set of guantum benchmark algorithms & protocols for

quantum error correction and control * Theoretically quantum computing looks

like it could do some important
computational tasks very fast

 Demonstrated that the speed of error correction dictates
now fast a quantum algorithm can be executed, not the
ohysical gate speed. E.g., Superconducting vs lon traps.

 Leverage classical computer science notions like
programming and compilation to render these algorithms as

guantum gate operations * To be useful a QC needs to do better

than a classical computer

e Discovered that error correction overhead Is
overwhelmingly driven by a single gate type.

 Use assumed characteristics of the qubit types to derive
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