
Program Manager: Dr. Mark Heiligman; E-mail: mark.heiligman@iarpa.gov

Quantum Computer Science (QCS)

 • Pick a set of quantum benchmark algorithms & protocols for
quantum error correction and control

• Leverage classical computer science notions like
programming and compilation to render these algorithms as
quantum gate operations

• Use assumed characteristics of the qubit types to derive
estimates for gates, operations and, eventually, algorithms

A way forward is to estimate the quantum resources needed
and time to completion for algorithms of interest.

How can we estimate how big and fast a quantum computer
would need to be in order to do anything useful?

Title

We structured the program into two phases: develop baseline
resource estimates; further explore the parameter space.

• Theoretically quantum computing looks
like it could do some important
computational tasks very fast

• To be useful a QC needs to do better

than a classical computer

• Demonstrated that the speed of error correction dictates

how fast a quantum algorithm can be executed, not the
physical gate speed. E.g., Superconducting vs Ion traps.

• Discovered that error correction overhead is
overwhelmingly driven by a single gate type.

• Developed three quantum computing programming
languages and compilers: QUIPPER (ACS), QUAFL (BBN),
and SCAFFOLD (USC & GT)

• Move beyond the ability to characterize idealized systems
by incorporating more complex error models

The Gap is Even Larger than We Thought

Theoretical claims have largely ignored overhead associated
with instantiation of algorithms by realistic physical systems.

• QCS looked at annotated algorithms, that is, all of the
quantum operations required to implement an algorithm
including control, housekeeping, and error correction

• In the absence of such actual systems, QCS posited PMDs
that, albeit idealized, will approximate best case performance

• QCS parameterized PMDs so as to be able to look at a range
of error correction techniques and algorithms

FY10Q3: Benchmark problem set developed
FY11Q4: Program kicked off
FY12Q4: Baseline resource estimates computed; 3 new
 quantum programming languages developed
FY13Q3: Initial delivery of quantum programming toolbox
 and new protocols for quantum control and
 quantum error correction

QCS confirmed that, even considering our idealized Physical
Machine Descriptions (PMDs), quantum computers will spend
most of their time doing error correction.

QCS developed the world’s first high level quantum
programming language and compilers.

QCS tools provide a good foundation for further work to
understand the expected performance of quantum systems.

Application
(Quantum Algorithm)

Physical Machine
(Qubit Technology)

 Quantum
Program

Error
Correction

Control
Theory

import Quipper

plus_minus :: Bool -> Circ Qubit
plus_minus b = do

 q <- qinit b
 q <- hadamard q

 return q

share :: Qubit -> Circ (Qubit, Qubit)
share a = do

 b <- qinit False
 b <- qnot b `controlled` a

 return (a,b)

bell00 :: Circ (Qubit, Qubit)
bell00 = do

 a <- plus_minus False
 (a,b) <- share a

 return (a,b)

alice :: Qubit -> Qubit ->
Circ (Bit,Bit)

alice q a = do
 a <- qnot a

`controlled` q
 q <- hadamard q

 (x,y) <- measure (q,a)
 return (x,y)

bob :: Qubit -> (Bit,Bit) -

> Circ Qubit
bob b (x,y) = do
 b <- gate_X b

`controlled` y
 b <- gate_Z b

`controlled` x
 cdiscard (x,y)

 return b

teleport :: Qubit -> Circ
Qubit

teleport q = do
 (a,b) <- bell00

 (x,y) <- alice q a
 b <- bob b (x,y)

 return b
-- main functions

main_alice =
 print_simple Preview

alice
main_bob =

 print_simple Preview
bob

main_teleport =
 print_simple Preview

teleport
main = main_teleport

Factoring Comparison

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

Modulus Size (Bits)

Lo
g(

O
pe

ra
tio

ns
)

Classical Factoring Quantum Factoring

Nominal Factoring Comparison

	Slide Number 1

