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Modeling neural computation using biologically inspired online algorithms  
Dmitri “Mitya”  Chklovskii 

Simons Center for Data Analysis, Simons Foundation, New York, NY 
How does the brain compute? Although this question has been asked many times before I believe 
that now is the right time to answer it. The cause for such optimism is the recent wealth of 
experimental datasets acquired using cutting-edge experimental techniques in combination with 
the development of theoretical tools from computer science and electrical engineering.  

Our ability, for the first time, to both image activity in neuronal populations using Ca indicators 
and to reconstruct connectomes of the same population using electron microscopy (EM) yields 
an unprecedented amount of information about the same neuronal circuit [1,2]. This information 
will guide us in formulating a theoretical framework of neural computation. Specifically, we 
propose to use machine learning algorithms developed for online (or streaming data) setting [4] 
to model the function of neuronal circuits [7].  

We have made the first step towards understanding neuronal computation by modeling single-
neuron computation as an online factorization of the incoming data matrix [7]. Such approach 
allows us to derive neuronal activity dynamics, as well as synaptic learning rules from a 
principled objective function. Thus, we can course-grain the unmanageable complexity of ion-
channel physiology and generate experimentally testable predictions. To test these predictions, 
we will rely on both anatomical and physiological datasets. Interestingly, the enormous size of 
experimental datasets [3] may require for their analysis the use of online algorithms [4] similar to 
the ones used to model neuronal function. 

My group is uniquely positioned to carry out this research program. It combines expertise in 
analyzing both anatomical [5,6] and physiological [8] data as well as formulating biologically 
plausible machine learning algorithms [7].  

 
[1] Bock DD, et al Reid, RC: Network anatomy and in vivo physiology of visual cortical 

neurons. Nature 2011, 471:177-182.  
[2] Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction selectivity 

circuit of the retina. Nature 471, 183–188 (2011). 
[3] Hayworth, KJ, et al Lichtman JW. Imaging ATUM ultrathin section libraries with 

WaferMapper: A multi-scale approach to EM reconstruction of neural circuits. Frontiers 
in Neural Circuits 8 (2014): 68. 

[4] Shalev-Shwartz, S., Online Learning and Online Convex Optimization. 
Foundations and Trends in Machine Learning, vol. 4, pp. 107-194, 2011. 

[5] Takemura S, et al, Chklovskii DB: A visual motion detection circuit suggested by Drosophila 
connectomics. Nature 2013, 500:175-181.  

[6] Plaza, S, Scheffer, L, Chklovskii DB, (2014) Towards large-scale connectome 
reconstructions. Current Opinion in Neurobiology 25: 201-210. 

[7] Hu, T, et al, Chklovskii, DB. A neuron as a signal processing device. Asilomar Conference 
on Signals, Systems and Computers, Pacific Grove, CA, Nov. 3-6 2013.  

[8] Pnevmatikakis, EA, et al Paninski L,Bayesian spike inference from calcium imaging data. 
Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, 2013.  



,QIRUPDWLRQ�SURFHVV�DUFKLWHFWXUDO�DSSURDFK�WR�WKH�FRUWH[
/��$QGUHZ�&RZDUG�DQG�7RP�*HGHRQ
$XVWUDOLDQ�1DWLRQDO�8QLYHUVLW\

6RPH�PRGHUQ�HOHFWURQLF�V\VWHPV�KDYH�H[WUHPH�FRPSOH[LWLHV��)RU�H[DPSOH��WKH�
V\VWHPV�WKDW�FRQWURO�VHFWLRQV�RI�ODUJH�WHOHFRPPXQLFDWLRQV�QHWZRUNV�PD\�KDYH�KXQGUHGV�
RI�ELOOLRQV�RI�WUDQVLVWRUV��PDQ\�WKRXVDQGV�RI�XVHU�IHDWXUHV��DQG�UHTXLUH�PDQ\�WKRXVDQGV�
RI�PDQ�\HDUV�RI�HIIRUW�WR�GHVLJQ��7KHVH�V\VWHPV�DUH�QHYHUWKHOHVV�XQGHUVWRRG�E\�KXPDQ�
EHLQJV��LQ�WKH�VHQVH�WKDW�WKH\�FDQ�EH�GHVLJQHG��FRQVWUXFWHG��PRGLILHG��DQG�UHSDLUHG�DV�
UHTXLUHG�

$OWKRXJK�WKHUH�LV�PLQLPDO�GLUHFW�UHVHPEODQFH�EHWZHHQ�VXFK�V\VWHPV�DQG�WKH�
EUDLQ��WKH�WHFKQLTXHV�XVHG�WR�RUJDQL]H�WKH�NQRZOHGJH�RI�VXFK�V\VWHPV�VR�WKDW�WKH\�FDQ�
EH�XQGHUVWRRG�FDQ�EH�DSSOLHG�WR�WKH�EUDLQ��,W�FDQ�EH�GHPRQVWUDWHG�WKDW�WKH�QHHGV�WR�
HFRQRPL]H�RQ�LQIRUPDWLRQ�KDQGOLQJ�UHVRXUFHV�DQG�WR�PRGLI\�IHDWXUHV�ZLWK�QR�XQGHVLUDEOH�
VLGH�HIIHFWV�RQ�RWKHU�IHDWXUHV�SODFHV�VRPH�VWURQJ�FRQVWUDLQWV�RQ�WKH�RUJDQL]DWLRQ�RI�
HOHFWURQLF�V\VWHP�DUFKLWHFWXUHV��,W�FDQ�DOVR�EH�GHPRQVWUDWHG�WKDW�WKH�QHHGV�WR�HFRQRPL]H�
RQ�SK\VLRORJLFDO�UHVRXUFHV�DQG�OHDUQ�ZLWKRXW�LQWHUIHUHQFH�ZLWK�SULRU�OHDUQLQJ�UHVXOW�LQ�
QDWXUDO�VHOHFWLRQ�SUHVVXUHV�WKDW�VWURQJO\�FRQVWUDLQ�EUDLQ�DUFKLWHFWXUHV��DOWKRXJK�LQWR�D�
TXDOLWDWLYHO\�GLIIHUHQW�IRUP�IURP�HOHFWURQLF�V\VWHPV�GHVLJQHG�XQGHU�H[WHUQDO�LQWHOOHFWXDO�
FRQWURO�

7KH�FRQVWUDLQWV�RQ�EUDLQV�UHVXOW�LQ�WKH�HPHUJHQFH�RI�D�UDQJH�RI�VXEV\VWHPV�
SHUIRUPLQJ�GLIIHUHQW�W\SHV�RI�LQIRUPDWLRQ�SURFHVVHV��DQDORJRXV�ZLWK�WKH�PHPRU\�DQG�
SURFHVVLQJ�VWUXFWXUHV�LQ�HOHFWURQLF�V\VWHPV��EXW�DJDLQ�TXDOLWDWLYHO\�GLIIHUHQW��2QH�RI�WKHVH�
VXEV\VWHPV�LV�D�VWUXFWXUH�WKDW�GHILQHV�DQG�GHWHFWV�LQIRUPDWLRQ�FRQGLWLRQV�RQ�GLIIHUHQW�
OHYHOV�RI�FRPSOH[LW\�ZLWKLQ�WKH�LQIRUPDWLRQ�DYDLODEOH�WR�WKH�V\VWHP

7KH�SURSHUWLHV�RI�WKH�WKHRUHWLFDO�FRQGLWLRQ�GHILQH�GHWHFW�VXEV\VWHP�FDQ�EH�PDSSHG�
WR�FRUWLFDO�DQDWRPLFDO�VWUXFWXUHV��7KH�ZD\�LQ�ZKLFK�FRUWLFDO�SURFHVVHV�DUH�XWLOL]HG�
E\�RWKHU�EUDLQ�VWUXFWXUHV�WR�DFKLHYH�FRJQLWLYH�EHKDYLRXUV�IXUWKHU�FRQVWUDLQV�WKH�
LQIRUPDWLRQ�SURFHVVHV�SHUIRUPHG�E\�WKH�FRUWH[��&RJQLWLYH�SURFHVVHV�FDQ�EH�XQGHUVWRRG�DV�
FRPELQDWLRQV�DQG�VHTXHQFHV�RI�LQIRUPDWLRQ�SURFHVVHV�SHUIRUPHG�WKH�FRUWH[�DQG�XWLOL]HG�
E\�RWKHU�VWUXFWXUHV���.H\�LQIRUPDWLRQ�SURFHVVHV�LQFOXGH�LQGLUHFW�DFWLYDWLRQ�RI�UHFHSWLYH�
ILHOGV�RQ�WKH�EDVLV�RI�IUHTXHQW�SDVW�VLPXOWDQHRXV�DFWLYLW\�ZKLFK�HQDEOHV�VHPDQWLF�
PHPRU\��DQG�LQGLUHFW�DFWLYDWLRQ�RI�UHFHSWLYH�ILHOGV�RQ�WKH�EDVLV�RI�VLPXOWDQHRXV�SDVW�
FKDQJH�ZKLFK�HQDEOHV�UHWULHYDO�RI�PHPRULHV�RI�VSHFLILF�HYHQWV�

7KH�WKHRUHWLFDO�FRQVLGHUDWLRQV�FRQVWUDLQ�FRUWLFDO�DUFKLWHFWXUH��EXW�GR�QRW�VSHFLI\�
H[DFWO\�KRZ�D�JLYHQ�LQIRUPDWLRQ�SURFHVV�ZLOO�EH�LPSOHPHQWHG�E\�DQDWRP\�LQ�GHWDLO��
+RZHYHU��WKH�FRQVWUDLQWV�JLYH�D�VWURQJ�VWDUWLQJ�SRLQW�IRU�VWXG\LQJ�ZKDW�LQIRUPDWLRQ�
SURFHVVHV�DUH�LPSOHPHQWHG�E\�GLIIHUHQW�FRUWLFDO�VWUXFWXUHV��DQG�SUHGLFWV�OLPLWV�ZLWKLQ�
ZKLFK�DQDWRP\�PXVW�LPSOHPHQW�FRJQLWLRQ��$QDWRPLFDO��SK\VLRORJLFDO�DQG�FKHPLFDO�
VWXGLHV�FDQ�WKHQ�GHWHUPLQH�H[DFWO\�KRZ�WKH�FRUWH[�LPSOHPHQWV�WKH�GLIIHUHQW�W\SHV�RI�
LQIRUPDWLRQ�SURFHVV�

��&RZDUG��/��$����������7RZDUGV�D�7KHRUHWLFDO�1HXURVFLHQFH��IURP�FHOO�FKHPLVWU\�WR�
FRJQLWLRQ��6SULQJHU��$PVWHUGDP�



Automated serial electron microscopy of brain samples 

JW Lichtman, Center for Brain Science Harvard University, Cambridge MA 02138 

In order to generate large volumetric datasets of brain tissue, my colleagues and I have 
developed an automated pipeline to section, image, and analyze neural circuits in brain samples. 
We section brain using a standard ultramicrotome with a device that automatically picks of the 
samples and puts them on a tape. We section below 30nm in thickness and can collect up to 
~12,000 sections per day. The sections are then cut into strips, placed on a silicon wafer, and 
imaged using scanning electron microscopy. To speed image acquisition we have developed 
automated means to locate the positions of sections on the wafer for high resolution imaging (a 
program called “Wafermapper”, Hayworth, Morgan et al., 2014). We have also helped optimize 
image acquisition by participating in the development of a multibeam scanning electron 
microscope (Carl Zeiss Inc) particularly for brain imaging. This device, now resident in my 
laboratory, uses 61 beams to image at speed approaching 1 billion pixels per second at 4nm 
resolution using secondary electrons. These tools may be useful for the acquisition of large brain 
samples.     

 



High Temporal, Spatial and Algorithmically Explicit Representation of the Human 
Brain: When, Where and What of Visual Recognition 

 
PI: Aude Oliva, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT 
Email: oliva@mit.edu, Phone: 617 452 2492, Web: http://cvcl.mit.edu/aude.htm 
Collaborators: Antonio Torralba (torralba@csail.mit.edu), CSAIL, and Dimitrios 
Pantazis (pantazis@mit.edu), McGovern Institute for Brain Research, MIT.  
 
Every time we open our eyes, visual information flows into various parts of our brain, 
with each region interpreting different aspects of what we are seeing. Integrating the 
temporal and spatial dynamics of this processing stream has posed a decades-long 
challenge to neuroscience. Using a novel neuroimaging technique [1], we can now map 
the flow of visual object information in the whole human brain and identify the stages of 
visual recognition processes at the millisecond and millimeter scales. The next step is to 
determine the type of computation that a human cortical region or networks of region 
perform. Using convolutional neural networks (CNNs) and large datasets (millions of 
labeled images, [2]) tailored to better represent human visual experience, we can compare 
the representations of various layers in the human and artificial neural networks, and 
adapt the artificial networks to emulate the process of categorization of complex visual 
stimuli, including recognition, familiarity, memory and decision making. Our approach 
demonstrates the possibility of a large-scale view of the dynamics and algorithms of 
recognition at the scale of processing steps across the whole human brain. 
 

 
 
Figure: A) Spatial brain activity over time. The signal starts in the V1 region as early as 
60ms and quickly spreads deeper into the brain enabling visual recognition. B) 
Visualizing the spatial correlation of CNN layers with human ventral visual system. 
  
References: 
 
[1] Cichy, R.M., Pantazis , D., & Oliva, A. (2014). Resolving human object recognition 
in space and time. Nature Neuroscience, 17(3), 455-464. !
[2] Zhou, B., Xiao, J., Lapedriza-Garcia, A., Oliva, A., & Torralba, A. (2014). Learning 
deep features for scene recognition using PLACES database. Submitted Manuscript. 



Sparse coding and hierarchical inference in cortical circuits!!
Bruno A. Olshausen, lead PI (UC Berkeley)!

Chris Rozell (GeorgiaTech), Fritz Sommer, Trevor Darrell (UC Berkeley)!!
! Our team aims to elucidate the neural mechanisms of sparse coding and 
hierarchical inference in cortical circuits, and to leverage these new insights to improve 
the state of the art in computer vision and image analysis. !
! There is now much evidence that nervous systems utilize sparse representations 
at early stages of sensory coding. At the same time, state-of-the-art advances in 
computer vision and signal processing have begun to employ sparse representations 
because of their proven effectiveness in tasks such as recognition and compression. 
However, the exact manner in which nervous systems compute sparse codes is still 
unknown. Elucidating these mechanisms through a combination of neurophysiological 
recording and connectomics would not only improve our understanding of the brain, but 
it could lead to new and more efficient methods for computing sparse representations in 
practical, technological applications. In particular, we may find new ways to compute 
sparse codes using dynamical systems that provide robust and informative 
representations of time-varying input.!
! Beyond sparse coding, one must understand how representations are 
transformed at higher levels of representation, and how feedback from higher levels 
modifies and improves representations at lower levels. It is well known that cortical 
systems represent sensory information in a hierarchy of processing stages, but how 
exactly signals are transformed from one stage to the next is largely unknown.  The 
computer vision community has recently had astounding success using deep networks 
for recognition that are inspired by the hierarchical structure of cortex, and so 
presumably having more detailed information about this system would enable further 
improvements in computer vision systems.  In particular, understanding the structure of 
feedback projections and the role they play in information processing and perception 
could prove extremely valuable. One theory is based on hierarchical Bayesian 
inference, and proposes that higher levels send ‘priors’ to lower levels to disambiguate 
representations. However, this theory has yet to be fleshed out and implemented in a 
detailed fashion that informs us about the neurobiology. Thus, a second thrust we 
propose is to develop a detailed model of hierarchical Bayesian inference, building on 
the already successful deep learning models.  At the same time we will characterize the 
neuroanatomical details of feedback circuitry, first in LGN and then in V1, through 
connectomics. By guiding this work in a theory driven manner, we aim to gain new 
insights and constraints about the role of feedback connections and their role in 
information processing.  We also aim to improve the state of the art in computer vision, 
as measured by performance on benchmark tasks, by using the principles of 
hierarchical inference ascertained from cortical feedback circuits.!
! Our team possesses expertise in sparse coding models and unsupervised 
learning algorithms, especially biophysically realistic mechanistic models of these 
processes.  We also have experience in developing deployable vision systems based 
on efficient large scale algorithms and infrastructures, specifically the recent yet already 
widely adopted open source deep learning software framework developed at Berkeley 
(c.f., caffe.berkeleyvision.org, and it's precursor, "DeCAF").
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Computational Advantages of SDR-Based Event Recognition Method 
 

Gerard (Rod) Rinkus, Neurithmic Systems LLC, rod@neurithmicsystems.com 
 

The  goal  of  IARPA’s  MICrONS  Program  is  to  revolutionize machine intelligence by emulating the 
brain’s  computing  “primitives”  and  the  large-scale architecture in which they are embedded.  Neurithmic 
Systems is developing a canonical cortical circuit model (TEMECOR, Sparsey�) and seeks to build a 
MICrONS Program based on it. Sparsey is a generic spatiotemporal probabilistic learning / inference 
algorithm and is currently being applied to video and multi-modal event recognition problems under ONR 
and DARPA UPSIDE support. 

Neurithmic Systems LLC seeks to team with experimentalists and other modelers interested in 
developing a cortically-inspired generic event recognition system based centrally on Sparsey.  Like many 
other model, e.g., HMAX models, Deep Learning models, Sparsey realizes the benefits of being stackable 
to arbitrary depth.  However, unlike these and other model classes, it has been developed from the outset 
as a spatiotemporal model and as a model of both episodic and semantic memory.  However, the strongest 
and clearest reason for pursuing a Sparsey-based model is that it possesses world-beating computational 
time efficiency.  That efficiency depends crucially on its use of sparse distributed coding (SDC).  For a 
computational approach to be a serious contender in general  intelligent  mining/processing  of  “big  data”, it 
must have world-beating computational time complexity for both learning and inference, or in the language 
of databases, both storage and best-match (not merely exact-match) retrieval of data.  Sparsey possesses 
what  we   call   “fixed-time   complexity”,  meaning   that   for any particular problem size, and thus, for the 
particular model instance large enough to solve it, the  algorithm’s  run  time  remains  fixed  for  the  life  of  the  
model instance.  Sparsey possesses fixed time complexity for both learning and best-match retrieval, a.k.a., 
probabilistic inference, pattern recognition.  No other published information-processing algorithm of any 
kind has this capability! 

Sparsey’s canonical algorithm operates similarly in all macs at all levels of an arbitrarily deep 
hierarchical model.  This algorithm has the property that it maps more similar inputs to more similar (more 
highly intersecting) SDCs.  In order to learn arbitrarily nonlinear categories, i.e., of the type referred to by 
Bengio (2012) as instances of the “AI Set”,  Sparsey relies on supervised learning, which is implemented 
as cross-modal unsupervised learning.   

For MICrONS, we intend to put together a project that will include two main efforts.  First, we would 
like to team with experimentalists with keen interest in imaging the large-scale population activity, at 
single-neuron resolution, such as possible with 2-photon calcium imaging.  As part of this effort, we would 
like to both vet existing aspects/predictions of the model and develop increasing detail, e.g., modeling 
different cortical lamina, and coverage, e.g., adding a hippocampus analog, thalamic detail, etc.  The second 
effort will focus on applying the Sparsey-based system to problems of interest to IARPA, e.g., recognizing 
events in video as well as to events in multi-modal data streams.  We believe that due to its fixed-time 
complexity, our approach is  highly  likely  to  be  able  to  scale  to  “Big  Data”-sized problems. 

 



MICrONS Proposers’ Day Abstract 
 

Lead Investigator: Dr. Alexander D. Wissner-Gross1,2,3,* 

1 Gemedy, Inc.; 2 Harvard University Institute for Applied Computational Science;  
3 MIT Media Laboratory; * Email: alexwg@gemedy.com; Web: http://www.alexwg.org   

 
 Recent advances in fields ranging from cosmology to computer science have hinted at a 
possible deep connection between intelligence and entropy maximization, but no formal physical 
relationship between them has historically been established. Recently, we proposed [1,2,3] a first 
step toward such a relationship in the form of a causal generalization of entropic forces that we 
found could cause two defining behaviors of the human “cognitive niche”—tool use and social 
cooperation—to spontaneously emerge in simple physical systems. Our results suggested a 
general thermodynamic model of adaptive behavior as a nonequilibrium process in open 
systems. Encouraged by this progress in reproducing macroscale cognitive adaptive behavior 
from an exceptionally simple thermodynamic principle, we are currently investigating network 
architectures and algorithmic frameworks for neural information processing that are 
consistent with existing microscale and macroscale neuroscience data, in which the 
fundamental cortical computing primitive acts as a causal entropy maximizing module, but 
that cannot be fully realized without additional mesoscale cortical microcircuit knowledge.  
 

 
Figure 1. Examples of adaptive behaviors generated by causal entropy maximization [1]. 

 
References 
[1]  A. D. Wissner-Gross, et al., “Causal entropic forces,” Phys. Rev. Lett. 110, 168702 

(2013). Available at: http://www.alexwg.org/publications/PhysRevLett_110-168702.pdf  
[2] D. Monroe, “Model suggests link between intelligence and entropy,” Physics 6, 46 

(2013). Available at: http://physics.aps.org/articles/v6/46   
[3] A. D. Wissner-Gross, “A new equation for intelligence,” TED Talk (2013). Available at: 

http://www.ted.com/talks/alex_wissner_gross_a_new_equation_for_intelligence  



Compositional Models of Vision; A.L. Yuille (UCLA)

A fundamental challenge to understanding the visual system is to determine how it can deal with
the enormous complexity of natural images and visual tasks. Analogous problems arise in other
aspects of intelligence.

We proposes a solution to this problem based on the compositional hypothesis. This allows
us to take advantage of a rich class of graphical models which have been developed to address
different visual tasks. Recent work (Yuille and Mottaghi 2013) suggests ways that models of this
type can be implemented by a visual architecture that has similarities to the visual cortex. We now
briefly describe the representation, inference algorithms, and the learning of these models.

Objects and other visual structures are represented hierarchically in terms of compositions
of more elementary parts which, recursively, are encoded in terms of subparts. Low level parts
correspond to features like edges, high-level concepts are objects, and intermediate-level concepts
are like gestalt groupings. Objects are represented in a distributed hierarchy in terms of their
parts/subparts where the higher levels of the hierarchy only encode coarse summary descriptions
of the objects (e.g., horse in a field) with the object details being specified explicitly at lower
levels (consistent with Lee and Mumford’s high resolution buffer hypothesis). Parts and subparts
are shared between objects, yielding enormous gains in efficiency of representation and inference
(Yuille and Mottaghi 2013). These models have much more explicit representations than alternative
hierarchical models, such as HMax and Deep Neural Networks, and can perform a larger variety of
visual tasks by accessing different levels of the hierarchy. For example, the top layer nodes identify
the object(s) and give coarse localization while the lower-level nodes represent the positions of the
object parts and the boundary of the object.

This compositional architecture enables an efficient inference algorithm, perhaps implemented
by neural circuits, where objects are detected by recursively composing hypotheses for their parts
and subparts. This enables rapid hierarchical inference (consistent with Thorpe et al.) with top-
down processing required only to resolve low-level ambiguities. The intuition is that the lower-
levels of the hierarchy represent low-level hypotheses about images (e.g., the presence of an edge,
or a segmentation boundary). These representations are ambiguous during the bottom-up pass
and hence multiple hypotheses must be considered. As these hypotheses are propagated up the
hierarchy there is greater context and the visual structure are larger, more complex, and hence less
ambiguous. In the top-down pass the higher-levels provide context to disambiguate the lower-
levels. In addition, alternative algorithms can be specified on this architecture such as analysis
by synthesis where a high-level node is activated (i.e. by priming) and an image of the object is
generated. Similarly the architecture enables us to implement top-down attention. We note that
compositional models are more similar to ”programmable neural networks” (Valiant – Circuits of
the Mind) where the network can function in different modes (e.g., top-down purely generative,
bottom-up and top-down, attention, priming).

There has been preliminary work on learning this hierarchical architecture in an unsupervised
manner (L. Zhu et al. 2008, L. Zhu et al. 2010). This learning follows the same compositional
strategy used in inference. We recursively cluster elementary parts/suparts to form more complex
structures.

Compositional models are successful on complex visual tasks evaluated on challenging datasets.
They appear to be consistent with known properties of mamallian visual systems and it would be
very exciting to test them in more detail and to modify them based on experimental findings.
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New tools for high-throughput electron microscopy of brain tissue 
Zhihao Zheng [1], Rick Fetter [1], John Price [2], Dan Milkie [3], Omar Torrens [3], Eric 
Perlman [1], Bill Karsh [1], David Peale [4], Harald Hess [1], Albert Cardona [1], 
Stephan Saalfeld [1], Davi Bock [1] 
 
Abstract: 
We are at the beginning of a project to image the entire brain of the fruit fly Drosophila 
melanogaster using serial section transmission electron microscopy (ssTEM). In the 
service of this goal and anticipated future projects, we are building custom hardware for 
high-throughput TEM imaging. These tools include: 
 
(1) An interferometric microtome (“iTome”) for automated sectioning and pickup 
of serial 30 nm sections on conventional slot grids; 
(2) A next-generation Transmission EM Camera Array (“TEMCA2”) for high throughput 
data acquisition (net ~50 megavoxels/second, 4x4x30 nm/voxel); 
(3) A fast piezo-driven TEM sample stage, capable of stepping and settling 
to nanometer stability in ~25-35 ms (versus ~3 seconds for a conventional stage); and 
(4) A multi-sample Autoloader, enabling automated sample exchange without breaking 
vacuum and 24/7 unattended image acquisition. 
 
To our knowledge, the TEMCA2 plus fast stage combination is the highest-throughput, 
highest signal-to-noise electron microscopy imaging system currently deployed for use in 
neural circuit reconstruction. The sample handling disadvantages of ssTEM during 
sectioning and imaging are well on their way to being mitigated by the iTome and the 
Autoloader, respectively. 
 
As proof-of-principle application of the TEMCA2 plus fast stage, we recently acquired a 
pilot image data set from a manually cut series of 4000 ~35 nm whole-brain sections. 500 
serial sections were imaged using TEMCA2 and the fast stage at 4x4 nm/pixel, resulting 
in a 5 TB dataset suitable for developing downstream software components 
(stitching, registration, intensity correction, automated segmentation). We are currently 
assessing traceability of fine neurites in the dataset; early results in the medial lobes of 
the mushroom body are promising. 
 
[1] Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA. 
 
[2] Hudson-Price Designs, LLC, Hingham, MA.  
 
[3] Coleman Technologies, Inc., Newtown Square, PA. 
 
[4] Integral Physics to Engineering, LLC, San Diego, CA. 
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Polarization Focal Plane Sensing with Plasmonic Nanostructures for Functional Neural Imaging 
Viktor Gruev and Barani Raman 

Washington University in St. Louis, St. Louis, MO. 
Recording neural activity using light has opened up unprecedented possibilities for understanding 

functionality of the nervous system. Probing neural activity via light offers great advantages over 
electrophysiology. Current state-of-the-art techniques for recording optical signals from neurons require 
converting electrical signals into optical signals via molecular reporters. However, use of such reporters 
has major limitations. To overcome these limitations, we have developed a novel technique for imaging 
intrinsic optical signals of neurons via polarization-imaging sensors. 

The polarization imaging sensor is realized by monolithic integration of plasmonic nanowires filters 
with CMOS imaging array to detect polarization properties of light at every imaged frame. The nanowire 
polarization filters are optimized and fabricated in the cleanroom facilities at Washington University and 
capable of detecting linearly polarized properties of the imaged environment.  

The polarization contrast of the scattered light from the neural tissue recorded with our sensor is 
directly correlated with neural activity due to intrinsic changes in neural cells during action potentials. 
Hence, a direct approach for recording neural activity is to monitor changes in polarization signatures 
acquired over time and space from neural tissue. This imaging technique allows for imaging of neural 
activity with high temporal resolution across a large spatial area of the brain. Furthermore, this technique 
avoids the use of molecular contrast dyes and records the intrinsic optical signal of neural cell. 

The high spatial resolution of the sensor allows for imaging large population of neurons 
simultaneously over large spatial area in the brain. Preliminary experiments conducted in vivo on the 
locust’s  olfactory  circuits  downstream   to  sensory  neurons   indicate   that   the  polarization   imaging system 
can discriminate various odors by analyzing spatial-temporal patterns using tailored machine learning 
algorithms. 

In the future, we would like to validate this new optical neural recording tool by correlating it with 
simultaneous intracellular electrophysiology signals obtained from the insect brain.  Furthermore, we will 
use this neural recordings technique to understand how populations of neurons in the insect antenna lobe 
and mushroom body (analogous to the vertebrate olfactory bulb and olfactory cortex) process information 
and perform the following pattern recognition problems: robust odor discrimination and perform adaptive 
filtering to suppress redundancy while retaining sensitivity to novel cues. We will use this approach to 
determine how the two primary coding dimensions: time and space, are used in biological signal 
processing. In order to address these questions, we will develop new class of polarization imaging sensor 
with plasmonic gold structures leading to high polarization sensitivity necessary to improve the signal to 
noise ratio of this imaging technique. Signal processing algorithms based on machine learning techniques 
will be developed to determine how time and space are used for information processing in the brain. 



Wei-Chung Allen Lee 
Harvard Medical School, Boston, MA 
 
Our group is interested in understanding the organizational principles underlying information 
processing in neuronal circuits. A neuron’s function is fundamentally dependent on how it is 
connected within its network. Therefore, understanding the relationship between connectivity – 
circuit structure – and cellular function will help us understand how neurons and networks 
transform information to bring about perception and behavior. 
 
We approach this problem by combining recent advances in non-linear light and high-throughput 
electron microscopy (EM) to perform detailed mapping of neuronal sensory physiology and 
network anatomy. To discover fundamental, conserved organizational principles, we apply our 
methods to multiple neuronal circuits for which we can characterize neuronal function, extract 
their wiring, and analyze the interplay. I will describe our work in two parts: our biological 
questions and our recent technological advances. 
 
To begin addressing the complexity of the cortical network we examined the interplay between 
circuit structure and neuronal function of the sparsely connected pyramidal cell network in the 
visual cortex. We used volumetric in vivo two-photon calcium imaging of a genetically-encoded 
calcium indicator to measure the time-resolved responses of a large population of identified 
neurons to an array of visual stimuli in the awake mouse. We subsequently reconstructed the 
local excitatory neuronal network using large-scale electron microscopy. In contrast to 
connectivity of local inhibitory circuitry, we find that connectivity between excitatory neurons 
exhibits functional specificity. Pyramidal neurons with similar sensory physiology are more 
highly interconnected with one another both within and between neocortical processing lamina. 
Moreover, similarly tuned neurons converge onto downstream excitatory targets. Finally, we 
observe topological organization of synaptic input between neurons connected by multiple 
synapses. This wiring specificity may act as a substrate for computations underlying cortical 
sensory processing. 
 
Our recent work demonstrates our ability to perform detailed mapping of neuronal network 
anatomy and sensory physiology. Although our high-throughput transmission electron 
microscope camera array (TEMCA) has increased the speed of imaging, we’ve continued to rely 
on humans for laborious manual sample collection and handling. Automated tape-collecting 
ultramicrotomes (ATUMs) have produced massive improvements in the reliability and speed of 
section pickup that allow collection of over 10,000 serial sections with minimal human 
intervention. However, in its typical form, the Kapton polyimide collection substrate is 
incompatible with fast TEM imaging. In an effort to synergistically bridge automated sample 
collection and high-speed TEM imaging, we have begun developing a novel TEM compatible 
tape substrate: Grid-Tape which we describe here. 



 

 

Identification of algorithmic principles of intermediate vision using two-photon 
microscopy and evolving visual stimuli 
 
Kristina J. Nielsen and Charles E. Connor 
Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins 
University 
 
 
PROBLEM:  OBJECT/SCENE VISION is arguably the most remarkable weakness in 
current machine intelligence.   Extracting real-world information from natural visual 
images has proven to be an essentially insoluble computational problem.  As a result, 
human observers are still required for determining what is in an image and what is 
happening in an image, and human controllers are still required to navigate intelligently 
through dynamic real-world environments.  The huge gap between machine vision and 
biological vision makes this a prime target for mining computational algorithms from 
neural circuits. 
 
EXPERIMENTAL TARGET:  NEURAL ALGORITHMS OF INTERMEDIATE VISION 
remain almost entirely unknown.  Research on biological vision has focused on (a) 
pixel-level processing of orientation, color, and motion in primary visual cortex (V1), and 
(b) endstage signals for object identity and other semantic-level information in 
inferotemporal cortex (IT) and prefrontal cortex.  The algorithms that transform (a) to (b) 
are implemented in intermediate cortical processing stages such as area V4.  
Understanding these intermediate transformations is the only way to replicate biological 
vision in computers. 
 
METHOD:  We would use 2-PHOTON IMAGING OF NEURAL POPULATION 
ACTIVITY to infer local circuit algorithms in area V4 of macaque monkeys, an animal 
model with extremely close functional and anatomical homology to human vision.  V4 
has only been studied with microelectrode recording from randomly sampled neurons at 
disparate locations.  2-photon imaging would provide the first opportunity to observe 
signaling in 100s of densely packed, closely interacting neurons within a local cortical 
circuit.  The basic processing module of the brain is the cortical column, a 0.5 mm 
diameter column of interconnected neurons.  2-photon imaging is the first technique for 
observing the information processing carried out by a cortical column. 
 
EXPERIMENTAL STRATEGY:  Inferring algorithmic principles from 2-photon data will 
require a new strategy for evoking a wide range of activity patterns in a V4 column.  We 
would adapt our previous strategy of evolving visual stimuli guided by responses of 
individual neurons.  Here, we would guide stimulus evolution with high-dimensional 
metrics for strength and variety of population activity patterns.  As algorithmic models 
develop, they would be used to optimize the informational value of evolving stimuli 
directly. 
 
COMPUTATIONAL DEVELOPMENT:  We will recruit team members to develop and 
implement intermediate visual processing algorithms based on our neural circuit 
analyses. We envision an iterative process in which neural measurements inspire 
initial computational models, which can then be used to guide stimulus evolution and 
test more specific hypotheses about circuit functions, thus constraining models of 
increasing specificity and complexity.



Extraction of neuronal network processing algorithms from high speed optical recording of 
membrane potential in genetically defined classes of neurons in motor cortex. 

Pieribone Laboratory - Yale University School of Medicine / The John B. Pierce 
Laboratory, Inc.

 To decipher the transfer functions of cortical neuronal circuitry it will be necessary to 
record the activity a large collections of identified classes of neurons during the cortical network 
processing underlying animal behaviors.  Electrode-based recording methods remain limited in 
there ability to identify the specific class of neuron which is being recorded, are highly invasive, 
cannot generally be maintained for extended periods of time and are restricted in the number of 
neurons that can be recorded simultaneously.  Optical recording of defined class of neurons 
expressing a genetically encoded probe of membrane potential remains an attractive addition, or 
possibly, alternative to traditional electrode-based recording.  Our laboratory has developed the 
most advanced genetically encoded fluorescent membrane potential probe, ArcLight (Neuron, 
2012) which remains the most viable probe for in vivo monitoring of neuronal activity.  Newer 
probes offer faster or larger signals in vitro but no other currently produce viable signals in vivo.  
In addition our laboratory has developed small mobile, fluorescence imaging systems to allow 
high speed capture of neuronal activity in freely moving rodents. 

 We are using the combination of these technologies to image motor cortex in behaving 
rodents while they execute natural behaviors (i.e. walking, lever pressing, righting, etc.).  Our 
goal is to simultaneously record the electrical activity of a range of different cortical cell types 
during stereotyped behaviors in rodents over a large area of motor cortical area (2 x 2 mm).  The 
activity patterns recorded in these image sequences is then correlated to high resolution 
positional data for the animal’s body and limbs recorded simultaneously using an array of 
cameras trained on the animal.  

 We are seeking collaborators to construct computer algorithms that determine the 
animal’s three dimensional position in time and are able to (if possible) determine body position 
and movements based on cortical electrical activity.  We can use cre-based viral vectors to drive 
expression in a number of available mouse models that target subtypes of cortical neurons.  We 
will compare the electrical activity of a range of different defined cortical cell types during the 
repeated execution of highly stereotyped motor actions.



Estimating Cortical Graph Structure

Carey E. Priebe, Randal Burns
& a cast of dozens ...

Johns Hopkins University

June 30, 2014

Many contemporary theories of neural information processing suggest that the neocortex
employs algorithms composed of repeated instances of a limited set of computing primitives.
There is a recognized need for tools for interrogating the structure of the cortical microcircuits
believed to embody these primitives. The cortical column conjecture suggests that neurons in
the neocortex are connected in a graph that exhibits motifs representing repeated processing
modules.

We consider theory and methods for inference regarding the structure of the cortical graph.
We model the cortical graph as a hierarchical stochastic block model (HSBM) with in-
duced subgraphs which are themselves independent stochastic block models. Our focus is
on extracting, and then estimating the structure of, the cortical graph, for the purpose of
subsequent modeling and algorithm development.

Let G ⇠ HSBM
�
(R1, n1, ⇢1, B1), · · · , (Rm, nm, ⇢m, Bm), Pm⇥m

�
.

Consider a three-step algorithm:
(1) graph clustering to find the induced subgraphs;
(2) clustering graphs to find the repeated motifs;
(3) clustering graph clusters to estimate the motif structures.

Theorem:
Under suitable eigenvalue assumptions on the HSBM, our three-step algorithm yields con-
sistent estimates for the cortical graph parameters.
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Reconstructing neural circuits via social

computing

Sebastian Seung

Princeton Neuroscience Institute and EyeWire.

July 2, 2014

Artificial intelligence via machine learning has radically improved the accuracy of

neural circuit reconstruction from serial EM images, but human intelligence is still

needed. At the present time, AI speeds up humans but does not replace them, because

serial EM images contain many locations that are difficult even for human experts to

disambiguate. EyeWire is an example of a system that achieves fast and accurate neu-

ral circuit reconstruction by combining human and artificial intelligence, an approach

known as social computing. EyeWire is scalable to large numbers of humans, with

solutions for the problems of crowd wisdom, crowd learning, and incentives.
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Abstract  

To  create  machine  learning  algorithms  based  on  the  function  and  activity  of  cortical  microcircuits  

we  need  to  build  computational  models  of  visual  stimuli  and  of  the  spatio-­temporal  firing  patterns  they  

elicit  in  the  central  nervous  system  of  animals  

and  humans.  To  achieve  this  goal,  we  will  

combine  the  pioneering  work  in  calcium  imaging  

developed  in  Dr.  Rafael  Yuste’s  lab  with  my  

expertise  in  computer  vision  and  machine  

learning.  We  will  harness  experimental  data  of  

neuron  activity  and  relate  it  to  the  visual  stimuli  

that  bring  about  this  activity.  

First,  we  need  powerful  representations  

for  the  visual  stimuli.  Building  image  and  video  

representations  typically  involves  four  steps:  

feature  extraction,  quantization,  encoding,  and  

pooling.  While  there  have  been  large  advances  in  feature  extraction  and  encoding,  the  questions  of  how  

to  quantize  video  features  and  what  kinds  of  regions  to  pool  them  over  have  been  relatively  unexplored.  

To  tackle  the  challenges  present  in  visual  data,  it  is  necessary  to  develop  robust  quantization  and  pooling  

methods.  

In  the  task  of  action  classification  in  videos,  I  have  proposed  a  new  method,  Source  Constrained  

Clustering,  which  quantizes  features  into  a  codebook  that  generalizes  better  across  actions.  The  main  

insight  is  to  incorporate  readily  available  labels  of  the  sources  generating  the  data,  e.g.,  the  people  who  

performed  each  action.  

In  the  pooling  step,  it  is  common  to  pool  feature  vectors  over  local  regions.  The  regions  of  choice  

include  the  entire  video,  coarse  spatio-­temporal  pyramids,  or  cuboids  of  pre-­determined  fixed  size.  A  

consequence  of  using  indiscriminately  chosen  cuboids  is  that  widely  dissimilar  features  may  be  pooled  

together  if  they  are  in  nearby  locations.  It  is  natural  to  consider  pooling  video  features  over  supervoxels,  

for  example,  obtained  from  a  video  segmentation.  However,  since  videos  can  have  a  different  number  of  

supervoxels,  this  produces  a  video  representation  of  variable  size.  I  have  proposed  a  fixed  size  video  

representation,  Motion  Words,  where  we  pool  features  over  video  segments.  

The  ultimate  goal  of  video  segmentations  is  to  recover  object  boundaries,  often  grouping  pixels  

from  regions  of  very  different  motion.  However,  in  the  context  of  Motion  Words,  it  is  important  that  

regions  preserve  motion  boundaries.  I  have  proposed  a  supervoxel  segmentation,  Globally  Consistent  

Supervoxels,  which  respects  motion  boundaries  and  provides  better  spatio-­temporal  support  for  

Motion  Words.  

Finally,  it  is  essential  that  the  representations  we  build  are  interpretable,  that  is,  we  want  to  be  able  

to  visualize  and  understand  why  videos  are  similar.  Motion  Words  enable  localization  of  common  

regions  across  videos  in  both  space  and  time.  This  gives  us  the  power  to  understand  which  regions  

make  videos  similar.  
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Our aim is to integrate experimental and theoretical approaches in order to develop novel 
machine learning algorithms inspired by cortical microcircuits. 

Our experimental aim is to understand the rules by which different types of neurons in the 
neocortex connect to each other and work together to process information. We want to determine 
what constitutes the elementary circuit motifs in the neocortex and to characterize their structure 
and the computations that these modules implement. We combine electrophysiological, imaging, 
and molecular tools with behavioral and computational approaches to dissect the functional 
architecture of inhibitory and excitatory microcircuits in the visual system of mice and monkeys. 
From an anatomical perspective we are mapping out the detailed wiring diagram of the cortical 
microcircuit using high-throughput multi-cell patch clamp recordings. This enables us to 
decipher the local circuit diagram including information about synaptic strength and characterize 
rules of plasticity. Using electrophysiological and imaging methods we characterize the activity 
structure of large populations of neurons to understand the nature of the neural code. To this end, 
developed an in vivo 3D high-speed, random-access two-photon microscope that is capable of 
simultaneous 3D motion tracking. This enables us to record the activity of nearly all of the 
hundreds of cells (up to 500 neurons) in small volumes of the cortex to characterize the structure 
of microcircuit population activity during visual processing. This method currently provides the 
largest number of neurons that can be recorded densely in vivo in 3D at such high rates in light 
scattering tissue. 

Our team has strong expertise in the development of statistical methods to analyze the organizing 
principles of high-dimensional neural data. Our ultimate goal is to apply the principles and 
canonical algorithms we learn from cortical circuits to build the next generation artificial neural 
networks that will be based on a set of new computational primitives inspired by neuroscience. 
We are particularly interested to study the role of feedback in neural computation and apply this 
in deep neural network architectures to solve machine-learning problems that are currently 
difficult with current state of the art machine learning methods.  



Optical technologies for high-speed, single cell specific functional imaging and control of 
large neuronal population 

 
Alipasha Vaziri - Research Institute of Molecular Pathology (IMP) & University of Vienna 

 
Knowledge of structural connectivity in neuronal circuits is necessary to understand how sensory 
information is represented and processed by neuronal circuits. However, as some examples of 
well-characterized neuronal architectures illustrate, structural connectivity is not sufficient to 
predict how stimuli are mapped onto neuronal activity patterns and how the collective dynamics 
of the network leads to behavior. Addressing this challenge, a prerequisite for discovering the 
computational and algorithmic principles used by the brain, has been hampered by lack of 
appropriate tools that allow application of defined high resolution spatiotemporal excitation 
patterns while simultaneously capturing the dynamics of the entire network. Our recent work has 
contributed towards closing this gap and moving towards a dynamic map of neuronal circuits. 
The spectral width of a femtosecond pulse can be used as an independent degree of freedom to 
“sculpt”   the spatial light distribution in the sample and generate axially highly localized sheet-
like light distributions. This has been exemplified by the technique of temporal focusing. We 
have used this technique to demonstrate scanning-less two-photon optogenetic activation of 
individual neurons embedded in a pool of genetically identical neurons within 1-2 ms [1]. 
Further, such sculpted light sources can be combined with galvanometers or spatial light 
modulators to generate arbitrary spatiotemporal excitation patterns on a neuronal population [2].  
Using the same principle of temporal focusing we have also developed a high-speed two-photon 
technique for brain-wide Ca2+imaging [3]. Thereby highly localized discs of light with diameters 
up to ~120 µm have been generated in the samples which were rapidly scanned to cover a 
volume. Using this approach we have demonstrated whole-brain volumetric Ca2+ imaging in C. 
elegans at 5Hz volume rate [3].  
In order to functionally image even larger volumes at higher speed we have recently established 
light-field microscopy in combination with 3D deconvolution [4]. Thereby we have 
demonstrated volumetric Ca2+-imaging of the entire larval zebrafish brain at 20Hz. Using cell 
identification and segmentation approaches we could follow the activity of ~5000 neurons 
distributed throughout the brain while animals were exposed to olfactory stimulations [4]. The 
extension of both techniques to larger volumes, to scattering media and to other systems 
including rodents is being currently pursued.  
Ultimately, the combination of the high speed functional imaging tools with our optogenetic 
methods will be crucial to move towards a dynamic map of neuronal circuits and the 
prerequisites for discovering brain algorithms, understanding of cortical computation and to 
exploit these findings to enhance machine intelligence. 
 
1. Andrasfalvy, B., et al., Two-photon Single Cell Optogenetic Control of Neuronal Activity 

by Sculpted Light. PNAS, 2010. 107 (26):11981-6. 
2. Losonczy, A., et al., Network mechanisms of theta related neuronal activity in 

hippocampal CA1 pyramidal neurons. Nat Neurosci, 2010. 13(8): p. 967-72. 
3. Schrodel, T., et al., Brain-wide 3D imaging of neuronal activity in Caenorhabditis 

elegans with sculpted light. Nature Methods, 2013. 10(10): p. 1013-1020. 
4. Prevedel, R., et al., Simultaneous whole-animal 3D imaging of neuronal activity using 

light-field microscopy. Nat Meth, 2014. 11(7): p. 727-730. 



Top Down Modeling and Efficient Automatic Inference for Anatomy and Simulation

Frank Wood — fwood@robots.ox.ac.uk — http://www.robots.ox.ac.uk/

˜

fwood/

Associate Professor, Department of Engineering Science, University of Oxford

Understanding the brain and emulating its function requires both an improved understanding of
anatomy and a better understanding of the functional and computational behavior of neural circuits.
We propose an effort that addresses both using advanced automatic inference technology.

Our proposed effort is rendered feasible by the existence of advanced tools for general pur-
pose inference currently under development at Oxford (recently matured enough for our purposes).
The development of these tools, called probabilistic programming systems (Anglican [Wood et al.,
2014] and Probabilistic-C [Paige and Wood, 2014]), was inspired by the need to define and rep-
resent complex shape and space priors, particularly those required to improve computational neu-
roanatomy via top-down, biologically parameterized regularisation. We can now this now.

These tools can also automatically invert arbitrary forward code-based simulators, for instance
whole-circuit neural dynamics models, given observed data.
Top-Down Regularization for Neuroanatomy

In close collaboration with partner neuroscientists, we propose to develop expressive, biologi-
cally parameterised, top-down model-based regularization for automated anatomy reconstructions
from high resolution neural imagery.

Recent work in semi-automated neuroanatomy are accurate and promising [Roberts et al., 2011,
Unger et al., 2009, Jarrell et al., 2012, Bock et al., 2011]. In work towards full automation, fea-
ture engineering significantly shapes the state of the art [Jain et al., 2007, Andres et al., 2008,
Venkataraju and Paiva, 2009]. We propose to build on these methods by developing expressive
top-down model-based regularization for neural process tracing that derives from recent work on
fully unsupervised tracking [Neiswanger et al., 2014] and that is implemented and executed in our
probabilistic programming systems.
Automatic Neural Circuit Simulator Inversion

Another compelling use case of probabilistic programming tools is the automatic inversion
of simulators. This quite new capability means that testing model-based hypotheses about, for
instance, circuit function can involve no additional effort beyond writing a forward model of the
circuit function and using probabilistic programming tools to invert it given features of observed
function. In close collaboration with functional anatomists and biologically inspired computing
partners we propose to test hypotheses about neural circuit function via automatic inversion of
such simulators.

As an example of how this works, consider an ongoing collaboration of the same sort in a
different field. A collaborator had already written a forward simulator for the stability performance
of a particular kind of ocean-going, re-positionable oil platform when connected to the seafloor. By
adding just tens of lines of probabilistic programming code we were able to automatically invert this
existing simulator. Running the resulting probabilistic program yielded the posterior distribution
of input parameters to the simulator whose values were known only up to unsatisfactory tolerances
before the inclusion of observation information. More crucially, knowing the distribution of these
values allowed novel explorations of scientific hypotheses. Efficient exploration of circuit function
hypotheses via automatic simulator inversion is much the same and is the goal of this effort.
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Biomimetic multiscale modeling of cognitive architecture and active sensing 
JC Principe, S Dura-Bernal, CE Schroeder, A Keil, M Ding, WW Lytton 
We propose a Bayesian approach to sensory processing, using a hierarchical, distributed 
architecture of dynamic processing elements. The network self-organizes, learning parameters 
and features that explain the input data. Several key features exploit and extend predictive coding 
schemes: 1) bidirectional (top–down and bottom–up) processing enable perceptual inference 
using both sensory data and empirical beliefs about causes from higher layers; 2) dynamic 
components are at the core of the model, allowing beliefs about temporal context to influence 
perceptual inference; 3) only salient features of the input data are stored, forming a compressed 
and sparse representation; 4) re-utilization of the same model within and across hierarchical 
levels allows for efficient software/hardware implementations, reminiscent of cortical 
microcircuits. 
An instantiation of this architecture was employed to recognize objects in videos using multiple 
nodes in a layered tree structure. Each node consisted of two modules: a state–space model, 
which extracted features, and an invariance-learning model, which inferred causes by pooling 
over states. Inference and parameter learning both minimized the same energy function with 
respect to either the states or the causes. Preliminary results show that the architecture has 
features that resemble the functional organization of lower visual cortex. The model showed 
better classification by leveraging temporal and top-down contextual information during 
inference, and was able to disambiguate a synthetic video from correlated noise. 
We further incorporate a key biological feature utilized by the visual system: eye movement 
control (active sensing). This deviates from the classical approach in vision research, where 
stimulus onset is regarded as the critical reference point in time. Instead, we now conceptualize 
visual parsing and object identification as a continuous loop where a saccade marks the onset of 
a new sampling episode. Including the motor and sequencing components is an enormous asset, 
because rather than indirectly inferring the brain's sampling strategy, we can directly observe it 
through the spatiotemporal pattern of eye movements. 
We will use a multi-level, multi-method approach (single cell, CSD, LFP, fMRI), to test the 
model predictions, by characterizing the spatial and temporal dynamics of these interactive 
processes, and inform and constrain computational modeling. We aim to build biomimetic 
computational models that map these Bayesian computations onto the known anatomy and 
physiology of brain circuitry, linking the different spatial and temporal scales in the brain. We 
will exploit our previous biomimetic models of several neocortical regions (S1, V1, M1, PFC), 
where multiscale modeling allowed us to capture the complexity of dendritic processing (micron 
scale) in the context of a large networks (mm scale) and networks of networks (cm scale). Our 
prior models have accurately reproduced physiological properties observed in vivo, including 
firing rates, LFPs, oscillations and traveling waves. Here, we will continue to focus on ensemble 
function (e.g., co-firing) rather than on individual spike trains. We consider oscillatory activity in 
neural assemblies as a relevant process that emerges from, but also constrains, interactive neural 
dynamics. We replace the concept of vision as a unidirectional feedforward sweep through a 
hierarchy of areas with a model of visual areas connected on a many-to-many basis, with many 
strong short feedback circuits complementing some sequential connectivity in both directions. As 
in the past, we will use information theoretic tools, including normalized transfer entropy (nTE), 
Granger causality and graph theory, to quantify information transfer, and gain insights into the 
relation between network structure and function. These analyses will help us build novel 
machine learning algorithms based on the computing principles of cortical microcircuits. 
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Simulation Environments and Tools for Constructing  
Neural Models of Cortical Microcircuits 

 
Jeffrey L. Krichmar, Nikil Dutt, Michael Beyeler, Kris Carlson 
Department of Cognitive Sciences, Department of Computer Science 
University of California, Irvine, Irvine CA, 92697-5100 USA 
 
Our group has developed a suite of tools for simulating brain-scale cortical circuits. These 
spiking neural networks (SNNs) are constrained by physiological details, such as synaptic 
conductances, spike-timing dependent plasticity, neuromodulation, and firing patterns, as well as 
anatomical details, such as thalamocortical projections, cortico-cortical connectivity, and cortical 
column microcircuitry. The simulation environment can be used to construct, and run SNNs 
quickly and efficiently by leveraging the parallel processing power of GPUs. For example, we 
constructed a motion perception model based on the cortical visual stream that exhibited both 
component and pattern motion selectivity found in cortical area MT, generated speed tuning 
curves that are in agreement with electrophysiological data, and reproduced behavioral responses 
in a forced choice task (1). We developed a spiking neural network model of visual cortex area 
V1 and thalamus that showed how cholinergic neuromodulation can affect both top-down and 
bottom up attention (2). In a laminar model of dorsolateral prefrontal cortex (dlPFC), we 
demonstrated how varying the levels of dopamine (DA) and norepinephrine (NE) in dlPFC could 
affect working memory (3). When DA and NE were outside the optimal levels, there was noise 
in the circuit, abolishment of sustained activity, and behavioral deficits in working memory 
tasks. Despite the success our group and others have had in creating these cortical circuits, tuning 
the enormous number of open parameters in these models becomes a difficult challenge as the 
desire for more biologically realistic cortical circuits increases. Therefore, we have developed a 
framework that utilizes evolutionary algorithms to automate the parameter tuning of SNNs (4). 
The objective function is based on known neurobiological constraints and therefore is a general-
purpose tool for constructing cortical and other neural circuits. Our group has expertise creating 
cortical circuits constrained by neurobiology and analyzing how these cortical primitives give 
rise to cognitive behavior. Our simulation environment, tuning framework, source code, and 
analysis scripts are publicly available at: http://www.socsci.uci.edu/~jkrichma/CARLsim/. 
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Subcortical brain structures, e.g. the thalamus, play a central role in sensory integration, 
prioritization, attention, and even consciousness. Although most studies in neuromorphic 
computing have focused on sensory transduction or emulation of circuits within the cerebral 
cortex, changes at the subcortical levels such as the diencephalon also play a fundamental role 
in sensory plasticity. Some researchers even refer to the thalamus as the seventh cortical layer. 
For example, of the ~50 nuclei in the thalamus only 5 are used for sensory relay and the 
remaining 45 nuclei participate in the complex cortical-subcortical networks and have no 
primary sensory inputs. These networks of structures are crucial to perception and are 
modulated through attention via both subcortical and cortical inputs. Studies in the related 
fields of neuroscience and neuropsychology also are recently converging to show the 
importance of thalamus in learning. On the other hand, a vast majority of today’s 
computational neuroscience models rely on associative memory models, which are important 
for intelligence, but it is still unclear how memory feeds back for early prediction and 
decision-making. Few research groups have focused on modeling specialized signaling 
properties of thalamic relay neurons or large-scale software models of thalamocortical 
systems. While these efforts are orthogonal within a subdomain, system designers have failed 
to capture the essential interplay between thalamic nuclei and cortical brain regions that are 
necessary for achieving complex behavior and seamless interaction. 
We are currently focused on designing the compute primitives for cortical processor (shown 
in Fig. 1) based on spatio-temporal processing. Initial studies have been performed to capture 
the rich temporal dynamics of thalamocortical interconnectivity and most particularly the 
reciprocal nature of the thalamocortical neuronal loop function and the interface modules to 
the cortical processor.  

(
Figure 1:  Congruence between a human brain and the proposed high-level processing system. 
The subcortical core preprocesses and makes predictions based on afferent signals.  It also 
facilitates communication channels between different regions of the cortex. 



PIs: Nima Mesgarani & Shihab Shamma 
Columbia University, University of Maryland 
Title: Biologically informed artificial neural network models 
Abstract:  
Understanding and modeling the cognitive abilities of the brain requires high-
resolution neuroimaging techniques that have only recently become available. 
Concurrently, advances in computing power have led to the re-emergence of 
artificial neural network (ANN) models as the dominant paradigm in machine 
learning. These analytically intractable models have generated both enthusiasm 
and skepticism in the field, reflecting their widespread albeit cryptic success. While 
ANNs are loosely modeled after the biological systems, they lack several known 
neural mechanisms that significantly contribute to the robust cortical 
representation of speech in the auditory cortex. Our goal in this proposal is to form 
an integrated research approach where reverse-engineering methodologies are 
used to determine the computation and organization of artificial neural networks 
leading to new biologically informed models simulating the functional properties of 
neural mechanisms. These models will show superior predictive power, reduce the 
performance gap with biological computing, and advance our knowledge of how 
the brain represent and processes speech.  

This is an interdisciplinary project, which lies at the intersection of 
neuroscience, speech engineering, and linguistics. The innovation of this project 
lies in its integration of methods and expertise across various disciplines, including 
system identification, signal processing, neurophysiology, and systems 
neuroscience. The long-term goal of this research is to define and model the 
neural basis of speech perception in humans. The aim of this proposal is to 
analyze and transform the artificial neural network models to accurately reflect 
the computational and organizational principles of biological systems through two 
specific objectives: I) to determine the acoustic and phonetic feature encoding, 
connectivity, and the hierarchical emergence of categories and invariance in 
artificial multilayer (deep) neural networks II) to determine the functional properties 
of neural mechanisms distinguishing biological and artificial systems, and 
incorporate them in new models.  

Understanding and modeling how the neural mechanisms contribute to 
human’s ability to robustly comprehend speech is a fundamental open scientific 
problem. An accurate computational model that can adequately explain the neural 
transformation and human cognition will have overarching impact in many 
disciplines including speech engineering, cognitive and systems neuroscience, 
speech and language pathology, and neurolinguistics.  
 



Cortical primitives for statistical inference in a structured world
Xaq Pitkow12, Ankit Patel1, Rich Baraniuk1

1Rice University, Department of Electrical and Computer Engineering
2Baylor College of Medicine, Department of Neuroscience

Our overarching hypothesis is that cortical computations use deep, nonlinear recurrent networks 
to create internal models of the natural world and infer hidden states, by reformatting and 
integrating sense data while respecting uncertainty. Our theories about this involve three themes:
! ! • The brain looks for change.
! ! • The brain weighs uncertainty.
! ! • The brain is deeply nonlinear.
! Change: Animals seeks out actionable information, which is distinguished from the general 
background due to some sort of change over space or time. Thus change detection is a 
fundamental operation performed by neural circuits. However, there are many variants of change 
detection, ranging from near-complete differentiation to fractional differentiation, implemented 
by circuit motifs such as delayed feedforward inhibition (Fig A) or recurrent inhibition (Fig B). 
Detailed knowledge of cortical circuitry can reveal new variants that evolution has selected as 
particularly useful.
! Uncertainty: Machine learning has advanced enormously by acknowledging the importance 
of weighing evidence probabilistically. Ample evidence shows that animals also make decisions 
based on probabilistic reasoning. These two lines of evidence suggest that an understanding of 
how the brain represents uncertainty could lead to new primitives for machine intelligence.
! Bayes’ rule trivially ensures that all neural representations r about the world s are 
probabilistic, according to p(s|r) ∝p(r|s)p(s). A non-trivial probabilistic computation would have 
to combine information between neural populations in a way that is consistent with probabilistic 
inference. This creates two restrictions: the combination must depend on at least two aspects of 
each population activity, such as an estimate and its uncertainty (Fig C, D); and the resultant 
activity must accumulate in accordance with the reliability of its inputs. Past experiments have 
reported neural representations that are consistent with these restrictions. Other probabilistic 
operations, notably including marginalizing over nuisance variables (arguably the most difficult 
and fundamental aspect of natural inference), can in simple cases be implemented by arbitrary 
random networks.
! Deep nonlinearities: Natural tasks are highly nonlinear functions of sense data. Nonlinear 
networks can learn to solve these tasks by careful bending of the response space. Deep networks 
have proven to be more efficient at solving real-world nonlinear tasks than shallow architectures. 
However, existing deep networks have been designed ad hoc. Our team has proposed principles 
for deep feedforward architectures based on probabilistic semantics for a hierarchical world. We 
aim to extend these ideas to fully recurrent networks, accounting for statistical structure by 
appealing to graphical modeling, and accounting for the limited flow of information (Fig E).
! Exact inference in graphical models is intractable, but approximate schemes based on 
message-passing algorithms provide a plausible alternative (Fig F). Neurons are naturally 
described as message-passing devices, but the particular manner of synthesizing messages 
depends on the nonlinear response properties of neurons. Combining our statistical inference 
framework with biological data about cortical connectivity and nonlinear responses will suggest 
new cortical computing primitives as the approximations that the brain uses for inference.



Title: Cortical Networks Research at IBM 
 
Name: Guillermo Cecchi*, James Kozloski, Janusz Marecki, Mattia Rigotti*, Mark Ritter*, 
Gerald Tesauro*, Roger Traub and Yuhai Tu  (* MICrON Proposers Conference participants) 
 
Organization: IBM T. J. Watson Research Center 
 

Abstract 
 
Neural Modeling: IBM Research has strong effort in neural modeling. Coupled with the right 
high resolution brain data, these models can serve to elucidate cortical computing primitives, 
inspire and help develop novel Machine learning (ML) algorithms. There are three areas of 
modeling that are relevant for MICrON: 

(1) Detailed mesoscopic thalamocortical models – A model a single column with thousands of 
realistic neurons was developed (R. Traub et al, J. Neurophysiol, 2005). The model has been 
successful in explaining and predicting cortical dynamics such as oscillations and seizures (e.g., 
Caracedo et al, J. Neurosci., 2013). Realistic multi-column model is being developed. 

(2) Neural network models linking neural activity and behavior – We developed a neural 
network model that extracts the hidden context variables (M. Rigotti et al, NeuroImage, 2010). 
We are studying the neural basis for context-dependent data representation (M. Rigotti et al, 
Nature, 2013), and its application for novel context-dependent ML algorithms. 

(3) Modeling of global architecture and dynamics for perception learning -- We have 
implemented linear and non-linear predictive models of large-scale spatio-temporal imaging data 
including fMRI and calcium imaging (Neuroimage 2011, IEEE 2011, JMLR 2013) in HPC (Blue 
Gene). We are studying how the predictive dynamical components can be incorporated in a 
novel ML framework to mimic brain’s perceptual learning capability.  

Data needed: To constrain and verify these models, we seek to collaborate with experimental 
neuroscience labs to get the relevant brain data on: 1) Anatomy -- EM reconstructions, DTI, 
axonal tracing to identify inter- and intra-area connectivity; 2) Function -- multi-area electrode 
array recordings, calcium imaging, high-resolution fMRI; 3) Behavior -- simultaneous 
measuring context-dependent behavior performance and neural activity in higher animals. 

Machine Learning: IBM Resaerch has extensive expertise in all areas of ML, including 
neuroscience-related algorithmic innovations and applications, such as reinforcement learning 
(RL), Informax, ML for neuroimaging data analysis, and Deep neural network learning. Our 
general goal related to MICrON is to develop new machine learning (ML) algorithms to carry 
out information processing tasks in complex environments based on novel ML frameworks with 
insights and constraints from neuroscience (cortical and thalamocortical circuits and their 
dynamics) underlying behavioral and context based perception in human (and higher animals).   



Sensory(processing,(plasticity(and(pattern(recognition(in(a(complex(‘mini’(brain(

Brian&H&Smith1,&Ramon&Huerta2,&Maxim&Bazhenov3&

1Arizona&State&University,&2University&of&California&San&Diego,&3University&of&California&Riverside&

Our&goal&is&to&replicate&through&computational&modeling&and&machine&learning&algorithms&a&network&
equivalent&to&the&cortical&structures&that&integrate&and&learn&about&multimodal&information:&olfactory,&
tactile,&and&visual&modalities.&We&use&an&animal&model&–&the&insect&(honey&bee)&brain&–&that&contains&
approx&106&neurons,&and&it&behaviorally&gives&rise&to&learning&about&and&generalization&among&stimuli&
important&for&locating&food&and&navigation&through&a&complex&visual,&tactile,&auditory&and&olfactory&
world.&&An&insect&brain&is&small&enough&that&we&stand&a&reasonable&change&of&modeling&the&entire&brain,&
including&regions&that&perform&computations&similar&to&areas&of&the&mammalian&brain&(e.g.&the&thalmoQ
corticalQhippocampal&system).&One&specific&anatomical&region&is&the&Mushroom&Body&(MB).&It&contains&
30%&of&the&total&neural&mass&in&the&brain,&and&it&performs&computations&similar&to&the&mammalian&
cortical&areas.&Our&group&is&capable&of&recording&the&spatioQtemporal&activity&patterns&from&large&
numbers&of&cells&in&the&MBs&simultaneously&in&the&input&and&output&layers.&We&then&fit&models&that&
relate&the&inputQoutput&activity&recorded&in#vivo.&We&also&have&built&pattern&recognition&algorithms&that&
utilize&the&structural&organization,&neural&coding&and&learning&capabilities&(nonassociative,&associative,&
operant)&observed&in&the&Mushroom&Bodies&that&can&achieve&competitive&or&better&performance&than&
stateQofQtheQart&algorithms&for&a&small&number&of&examples.&Our&strength&also&lies&in&the&ability&to&relate&
machine&learning&algorithms&to&realistic&conductance&based&models&of&neurons.&By&relating&realistic&
models,&anatomical&structure,&in#vivo&spatioQtemporal&recordings&and&behavioral&conditioning&we&have&
unique&capabilities&to&pinpoint&the&main&principles&that&achieve&efficient&learning&of&spatioQtemporal&
input&patterns.&We&also&think&that&it&is&critically&important&to&understand&how&novel&pattern&recognition&
algorithms&can&cope&and&take&advantage&of&the&nonlinear&dynamic&nature&of&the&natural&stimuli.&Most&of&
the&stateQofQtheQart&algorithms&assume&static&data&or&at&best&linear&models&in&the&form&of&primitive&linear&
dynamical&systems&of&hidden&Markov&models.&The&reality&of&neural&processing&is&that&these&systems&are&
highly&dissipative&nonlinear&dynamical&systems.&Ignoring&this&complexity&hampers&the&ability&to&truly&
understand&how&the&human&brain&computes&natural&data.&



 
MICrONs Poster Abstract 
The Georgia Tech Research Institute (GTRI), the applied research arm of Georgia Institute of 
Technology, in collaboration with a faculty member from the resident instruction side of Georgia 
Tech, are engaged in research in  combining neuroscience results with modeling and machine 
learning . The team consists of Elizabeth Whitaker (GTRI- Artificial Intelligence (AI), modeling, 
machine learning), Ethan Trewhitt (GTRI-Software Engineer, modeling, machine learning), Eric 
Schumacher (School of Psychology–Neuropsychology).  We worked together on the IARPA 
ICARUS project, and on an internal IR&D project developing Brain-based Architectures for 
Training.  We are also working together on the DARPA Narrative Networks projects, integrating 
neuroscience findings from the fMRI studies at the School of Psychology into narrative 
composition tools that can be used to experiment with and understand how stories influence 
behavior. 

The objective of the ICArUS Program was to construct brain-based computational models of the 
process known as sensemaking. Sensemaking, a core human cognitive ability, underlies 
intelligence  analysts’  ability  to  recognize  and  explain  relationships  among  sparse and ambiguous 
data. The GTRI/GT team produced a spiking neuron model of a brain component which was 
integrated  into  the  larger  ICArUS  team’s  overall  model of sensemaking.  The model of the anterior 
cingulate cortex was configured to interact with other ICArUS components to solve the ICArUS 
challenge problems. The ACC was configured for uncertainty monitoring, conflict monitoring, 
recognition of surprise and reward and punishment recognition and learning for performing its role 
in the challenge problem. GTRI provided the modeling, software design, prototyping and 
integration with the other model components, while the neuroscience domain expertise, joint 
model design and vetting were done by the Georgia Tech School of Psychology neuropsychologist. 

The objective of the Brain-based Architecture for Training research was the development of an 
architecture and approach for conducting training activities based on neuroscientce models of 
student reasoning, learning, and emotion. We will integrate lessons from brain-based models of 
human learning and reasoning with more traditional student modeling, teaching and learning 
theories. We are exploring the integration of case-based reasoning and scenario generation 
techniques, the use of stories, to drive training content in an agent-based architecture for training 
and mission rehearsal.  

In the DARPA Narrative Networks project, Dr. Schumacher is using fMRI experiments and 
multivoxel pattern analysis to study the effect of suspense in narrative on the ability of the subject 
to remember the lessons which come after, which combined with other neuroscience findings from 
the Narrative Networks project is then applied to and integrated into a tool for narrative 
composition which will incorporate suspense and other findings into the composition to generate 
a narrative that will influence a target audience. 

The GTRI team has researched and applied machine learning of several types.  In the DARPA 
Integrated Learning Project we provided the case-based learning approach which collaborated with 
learning approaches from other universities to solve problems.  We are currently working on an 
internal research project which is using hybrid cognitive learning and reasoning approaches to 
solve a variety of problems.  These approaches can be applied at the neural data to help build 
models 

Betty Whitaker
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Implement!novel!machine!learning!algorithms!that!use!
mathematical!abstractions!of!the!identified!cortical!computing!

primitives!as!their!basis!of!operation!
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From!Neuroscience!to!Machine!Learning:!An!end6to6end!story!
!
!

Under!the!auspices!of!DARPA!SyNAPSE!Program,!IBM!has!developed!an!end6to6end!
ecosystem!that!includes!new!neuroscience!data![1],!novel,!non6von!Neumann!
hardware![2],!new!simulator![3],!new!neuron!models![4],!new!programming!
language![5],!and!new!applications![6].!!
!
Leveraging!our!investment,!to!build!a!vertically!integrated!team,!IBM!is!looking!for!
collaborations!with!

6 experimental!neuroscientists!who!can!provide!operationalizable,!
quantitative!data!–!within!the!time!frame!of!IARPA!MICrONS!project!–!
relating!to!neuroanatomy,!neurophysiology,!neuroplasticity,!
neurotransmitters.!!

6 computational!neuroscientists!who!can!bridge!the!gap!between!neuroscience!
data!and!machine!learning!via!concrete!models.!!

!
!
[1]!Dharmendra!S.!Modha!and!Raghavendra!Singh,!"Network!Architecture!of!the!
Long!Distance!Pathways!in!the!Macaque!Brain",!Proceedings!of!the!National!
Academy!of!the!Sciences!USA,!2010.!
!
[2]!Paul!Merolla,!et!al.,!"A!Digital!Neurosynaptic!Core!using!Embedded!Crossbar!
Memory!with!45pJ!per!spike!in!45nm",!IEEE!Custom!Integrated!Circuits!Conference,!
September!2011.!
!
[3]!Robert!Preissl,!et!al.,!"Compass:!A!Scalable!Simulator!for!an!Architecture!for!
Cognitive!Computing",!IEEE!SC!2012.!
!
[4]!Andrew!S.!Cassidy,!et!al.,!"Cognitive!Computing!Building!Block:!A!Versatile!and!
Efficient!Digital!Neuron!Model!for!Neurosynaptic!Cores,"!Proceedings!of!the!
International!Joint!Conference!on!Neural!Networks!in!Dallas,!TX,!August!2013.!
!
[5]!Arnon!Amir,!et!al.,!"Cognitive!Computing!Programming!Paradigm:!A!Corelet!
Language!for!Composing!Networks!of!Neurosynaptic!Cores,"!Proceedings!of!the!
International!Joint!Conference!on!Neural!Networks!in!Dallas,!TX,!August!2013.!!
!
[6]!Steve!K.!Esser,!et!al.,!"Cognitive!Computing!Systems:!Algorithms!and!Applications!
for!Networks!of!Neurosynaptic!Cores,"!Proceedings!of!the!International!Joint!
Conference!on!Neural!Networks!in!Dallas,!TX,!August!2013.!!
!

Filipp Akopyan
IBM Research - Almaden



Lambda  Labs:  MICrONS  Abstract  

Stephen  Balaban  s@lambdal.com  
David  Nicholaeff  dnic@lanl.gov  
July  6th,  2014  
  
Lambda  Labs  seeks  an  academic,  industrial,  or  national  research  laboratory  to  collaborate  with  in  order  
to  improve  algorithms  for  machine  intelligence.  To  construct  this  new  class  of  models,  we  will  draw  
upon  our  experience  implementing  modern  Deep  Learning  methods,  data  parallel  programs,  and  
large-­scale  systems.  
  
Current  models  for  brain-­like  computing  include  Convolutional  Neural  Networks  (CNNs),  
Autoencoders,  and  Restricted  Boltzmann  Machines  (RBMs).    These  methods  break  away  from  the  
former  paradigm  of  pattern  recognition:  hand-­engineered  features  with  a  generic  classifier.  They  
currently  achieve  state-­of-­the  art  performance  on  a  number  of  benchmarks.  However,  these  methods  
still  exhibit  a  large  performance  gap,  both  in  accuracy  and  energy  efficiency,  to  biological  neural  
networks.  
  
Current  spiking  neuron  simulations,  like  Spaun,  simulate  millions  of  neurons.    One  second  of  real-­time  
activity  takes  2.5  hours  of  compute  time.    Data  parallel  programming  techniques  on  GPUs  using  
frameworks  such  as  OpenCL  and  CUDA  often  lead  to  order  of  magnitude  speedups  over  non  data  
parallel  implementations.  We  hope  to  leverage  this  technology  to  allow  our  group  to  conduct  rapid  
prototyping  and  testing  of  different  models  and  hypotheses.  
  



Machine Intelligence from Cortical Networks Proposer’s Day 

Abstract 

NVIDIA Corporation 

NVIDIA Corporation has been a pioneer in visual computing for two decades.  NVIDIA has 
deep experience in both the art and science of using computers to analyze and create images.  
NVIDIA is the inventor of the GPU, a highly parallel processor that excels at accelerating 
computational tasks in areas such as signal processing, video enhancement and machine learning.  
NVIDIA is also the inventor of CUDA, an advanced language and ecosystem for high-
performance parallel computing.  NVIDIA has expertise implementing and optimizing 
algorithms on parallel architectures.  This includes strong experience with machine learning 
algorithms and systems, in both training and deployment.  In recent years, nearly all of the top-
place research teams competing in the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) have been using GPU-enabled deep neural networks.   
 
NVIDIA is seeking to partner with teams that are attempting to significantly advance the state-
of-art in machine learning. NVIDIA can apply strong expertise in implementing novel machine 
learning algorithms for computationally intense approaches that apply to very large datasets.  
NVIDIA prefers to partner with teams that are working with problems and systems that require 
extremely large amounts of computation and data processing.  
 



Qelzal  Corp.    
  
Qelzal Corp. was founded by Olivier JMD Coenen and Ping Wang to bring                                      
brain-­inspired technologies to the world and demonstrates their advantages in key                                
areas  over  conventional  technology.    
  
The team has over 45 years of combined experience with expertise in physics,                                      
brain-­inspired processing, spiking neural networks, machine learning, deep                       
networks, control and robotic engineering with degrees from Stanford, UCSD &                                
McGill in Physics, Neuroscience, Electrical Engineering, Computer Science and                          
Biology.    
  
OC was cofounder CEO at Intentiva Inc., graduated from Founder Institute and                                   
selected by Plug and Play accelerator. He worked on a DARPA project, which                                      
designed an "artificial nervous system for UAVs" (Unmanned Aerial Vehicles) at                                
Brain Corp. PW is founder of Ansir, an innovation center and was founder CTO,                                         
business strategist at VEA Tech. and business development officer at Mytek, with                                   
experiences  at  HP  and  Agilent  and  in  a  couple  of  Silicon  Valley  startups.  
  
OC established and directed the Neuroscience Group at the Sony Computer                                
Science Laboratory, Paris for 7 years, where his group developed technologies in                                   
signal processing, machine learning and robotic control inspired from brain                             
processing. He created and was leader or scientific coordinator on six funding                                   
grants, of which two major projects totaling over 12 million dollars in funding and                                         
received  16  academic  awards  and  fellowships.  
  
Olivier  Coenen,  CEO,  Pres.;;  Ping  Wang,  CTO,  Bus.Dev.;;  
olivier.coenen@qelzal.com;;  ping.wang@qelzal.com;;  www.oliviercoenen.com;;  
www.linkedin.com/in/hpwang;;  Tél:  650  427-­0360;;  www.Qelzal.com  
Some  publications  at  http://goo.gl/hEZKMz  on  ResearchGate.    
  
Synchrony of Thalamocortical Inputs Maximizes Cortical Reliability, Hsi-­Ping                       
Wang,  et  al.,  Science  328,  106  (2010);;DOI:  10.1126/science.1183108  



Reverse and Forward Engineering High-Level Vision
Cox Lab at Harvard University
MICrONS Proposer’s Day Abstract

Abstract:

Humans recognize visual objects with such ease that it is easy to overlook what an impressive 
computational feat this represents. Any given object in the world can cast an effectively infinite 
number of different images onto the retina, depending on its position relative to the viewer, the 
configuration of light sources, and the presence of other objects in the visual field. In spite of this 
extreme variation, biological visual systems are able to effortlessly recognize at least hundreds of 
thousands of distinct object classes, reason about their structure, and guide action — a feat that 
no current artificial system can come close to achieving.

Our laboratory seeks to understand the computational underpinnings of object recognition and 
high-level vision, through a concerted effort on two fronts: first, we endeavor to understand the 
workings of biological visual systems using a variety of experimental techniques, ranging from 
microelectrode recordings and 2-photon calcium imaging to visual psychophysics; second, we 
attempt to instantiate what we have learned into artificial object recognition systems, leveraging 
recent advances in parallel computing to build systems that begin to approach the scale of natural 
systems.  We believe that an integrative approach combining both systems neuroscience and 
computer science research holds great progress to accelerate our understanding of cortical 
computation.  Our poster presentation seeks to highlight both of these core areas of research.

Our group has done significant work to establish rodents as a more experimentally-accessible 
and tractable model system for studying high-level visual processing.  Our group was the first to 
demonstrate sophisticated, invariant object recognition abilities in rodents (Zoccolan et al. 2009), 
and we have built up significant infrastructure for training rodents to perform complex visual 
tasks.  We pair these behaviors with high-throughput electrophysiology and 2-photon calcium 
imaging, to probe the nature of population responses in cortex, especially as a function of visual 
experience.  We have found that rat extrastriate cortical neurons have many key features in 
common with primate visual cortical neurons, suggesting that the rat is a promising model for 
studying fundamental cortical primitives.

On the computational side of the lab, we develop biologically-inspired algorithms and models 
aimed at solving practical vision problems in a variety of areas, including face and object 
recognition (Pinto et al. 2009, Pinto et al. 2011, Scheirer et al. 2014), saliency prediction (Vig et 
al. 2013, Vig et al. 2014), and robotic navigation (Milford et al. 2014).  Recently, we have begun 
to explore the incorporation of biological data as a constraint on machine learning algorithms 
(Scheirer et al. 2014), and we believe that such approaches hold great promise in driving 
progress in biologically-inspired machine learning.



!
!
In!this!presentation!we!will!give!an!overview!of!unconventional!computing!efforts!at!
the!University!of!Tennessee!and!their!applicability!towards!the!goals!of!the!
MICrONS!program.!!We!will!describe!DeSTIN,!an!architecture!for!machine!learning!
that!has!been!demonstrated!to!be!wellCsuited!to!analog!hardware!implementations.!!
An!analog!CMOS!deep!learning!engine!based!on!DeSTIN!has!been!demonstrated!
with!a!computational!efficiency!of!about!1!TOPS/W,!a!280x!improvement!over!a!
synthesized!digital!equivalent.!!We!will!also!describe!the!NeuroscienceCInspired!
Dynamic!Architecture!(NIDA),!a!spikeCbased!computational!framework!designed!
through!evolutionary!optimization.!!Finally,!we!will!provide!an!overview!of!the!
capabilities!within!the!University!of!Tennessee!in!the!broader!area!of!
unconventional!and!bioCinspired!computation.!
!

Jeremy Holleman
University of Tennessee, Knoxville



Neuromorphic  Cortical  Architectures  for  Bio-­inspired  Learning  Machines  
  

Emre  Neftci  and  Gert  Cauwenberghs  
Institute  for  Neural  Computation,  University  of  California  San  Diego  

  
The constraints on digital computers shaped current machine learning algorithms and their                                   
implementation such that they rely on discrete updates, exact arithmetics, off-­line search                                   
through  deep  memory,  and  minimal  interprocess  communication.  

In contrast, the brain's cognitive power emerges from a collective form of                                   
computation extending over very large ensembles of sluggish, imprecise, and unreliable                                
analog components. This realization spurred scientists and engineers to explore the                                
remarkable mechanisms underlying biological cognitive computing by reverse engineering                          
the brain in "neuromorphic" silicon, providing a means to validate hypotheses on neural                                      
structure  and  function  through  "analysis  by  synthesis".    

Our team exploits the fact that the brain and its corresponding neuromorphic                                   
emulations are free from the constraints imposed by traditional digital machine learning to                                      
offer a novel standpoint for understanding and implementing highly efficient and effective                                   
bio-­inspired learning machines. To reach this goal, we design large-­scale and real-­time                                   
adaptive, general-­purpose spiking neuromorphic supercomputers;; and map learning                       
algorithms  and  representations  onto  these  spike-­based  neural  substrates.  

Our work on neural supercomputing infrastructure has contributed a hierarchical                             
address event routing (HiAER) integrate-­and-­fire array transceiver (IFAT) system for                             
large-­scale hybrid analog-­digital spike-­based neuromorphic computing. Scaling to millions                          
of multi-­compartment integrate-­and-­fire (I&F) neurons and billions of conductance-­based                          
synapses with locally dense and globally sparse dynamically reconfigurable synaptic                             
connectivity and plasticity, the HiAER-­IFAT system serves as a computational tool for                                   
large-­scale systems neuroscience as well as a real-­time and low-­power silicon platform for                                      
neocortical  vision  and  audition.  

Our work on bio-­inspired learning architecture identified conditions under which                             
such networks of I&F neurons support Monte Carlo neural sampling from Boltzmann                                   
probability distributions. We further formulated a form of spike-­timing dependent plasticity                                
that augments these I&F networks with on-­line learning in complex environments,                                
implementing a variant on contrastive divergence learning in equivalent Boltzmann                             
machines.  

We envision that this research will benefit from and contribute to synergies with                                      
other efforts focusing on high-­throughput connectomics and systems neuroscience data to                                
constrain our learning machines, and in identifying cortical primitives of computation and                                   
learning. Such primitives may draw on further advances in thermodynamical foundations of                                   
machine  learning  with  biophysically  realistic  neural  sampling.  



dŚĞ� /�ZW�� D/�ƌKE^� ƉƌŽŐƌĂŵ� ƐĞĞŬƐ� ƚŽ� ďƵŝůĚ� Ă� ŶĞǁ� ŐĞŶĞƌĂƚŝŽŶ� ŽĨ� DĂĐŚŝŶĞ� >ĞĂƌŶŝŶŐ� ĂůŐŽƌŝƚŚŵƐ� ŝŶ�
dĞĐŚŶŝĐĂů��ƌĞĂ�ϰ͘

�ƵƌƌĞŶƚ� D>� ĂůŐŽƌŝƚŚŵƐ� ŚĂǀĞ� ƐŚŽǁŶ� ƌĂƉŝĚ� ƉƌŽŐƌĞƐƐ� ŽǀĞƌ� ƚŚĞ� ƉĂƐƚ� ĚĞĐĂĚĞ͘� DŽƌĞ� ƌĞĐĞŶƚůǇ͕� ůĞĂƌŶŝŶŐ�
ĂůŐŽƌŝƚŚŵƐ�ƵƐŝŶŐ�ĚĞĞƉ�ĂƌĐŚŝƚĞĐƚƵƌĞƐ�ŚĂǀĞ�ƐŚŽǁŶ�ŽďũĞĐƚ�ĚĞƚĞĐƚŝŽŶ͕�ƌĞĐŽŐŶŝƚŝŽŶ�ĂŶĚ�ĐůĂƐƐŝĨŝĐĂƚŝŽŶ�ƌĞƐƵůƚƐ�
ƚŚĂƚ� ƌŝǀĂů� ŚƵŵĂŶ�ƉĞƌĨŽƌŵĂŶĐĞ�ĂŶĚ� ŝŶ� ƐŽŵĞ� ĐĂƐĞƐ� ĞǀĞŶ� ƐƵƌƉĂƐƐ� ƚŚĞŵ͘�DŽƐƚ�ŽĨ� ƚŚĞƐĞ� ŐĂŝŶƐ�ŚĂǀĞ�ďĞĞŶ�
ŵĂĚĞ�ĨĞĂƐŝďůĞ�ďǇ�ŝŶƐƉŝƌĂƚŝŽŶƐ�ƉƌŽĚƵĐĞĚ�ďǇ�Ă�ƉĂƌĂůůĞů�ĞǆƉůŽƐŝŽŶ�ŝŶ�ŬŶŽǁůĞĚŐĞ�ĂŶĚ�ĚĂƚĂ�ĨƌŽŵ�ĂĚǀĂŶĐĞƐ�ŝŶ�
ŶĞƵƌŽƐĐŝĞŶĐĞ͘

EŽŶĞƚŚĞůĞƐƐ͕� ŝŶ� ƐĞǀĞƌĂů� ĂƐƉĞĐƚƐ͕� ĞǀĞŶ� ƚŚĞƐĞ� ůĞĂƌŶŝŶŐ� ĂůŐŽƌŝƚŚŵƐ� ƐĞǀĞƌĞůǇ� ůĂŐ�ŚƵŵĂŶ� ĐĂƉĂďŝůŝƚŝĞƐ͕� ĞǀĞŶ�
ƚŚĂƚ� ŽĨ� ƐŵĂůů� ĐŚŝůĚƌĞŶ� ůĞƚ� ĂůŽŶĞ� ĞǆƉĞƌƚ� ĂĚƵůƚƐ͘� &Žƌ� ĞǆĂŵƉůĞ͕� ƐƵĐŚ� ĂůŐŽƌŝƚŚŵƐ� ŶĞĞĚ� Ă� ƐĞƚ� ŶƵŵďĞƌ� ŽĨ�
ƉƌĞĚĞĨŝŶĞĚ�ĐĂƚĞŐŽƌŝĞƐ͖�ĂƌĞ�ŶŽƚ� ĨůĞǆŝďůĞ�ĞŶŽƵŐŚ�ƚŽ�ŐĞŶĞƌĂůŝǌĞ�ďĞǇŽŶĚ�ƚŚĞŵ͖�ĂƌĞ�ƉŽŽƌ�Ăƚ�ĞǆƉůĂŝŶŝŶŐ�ĂŶĚ�
ĞǀŝĚĞŶĐĞ�ƌĞĐŽƵŶƚŝŶŐ͕�ŶĞĞĚ�Ă�ůĂƌŐĞ�ĂŵŽƵŶƚ�ŽĨ�ĂŶŶŽƚĂƚĞĚ�ƚƌĂŝŶŝŶŐ�ĚĂƚĂ�ĂŶĚ�Ă�ŚƵŐĞ�ƚƌĂŝŶŝŶŐ�ƚŝŵĞ�ƚŚĂƚ�ŵĂǇ�
ƌƵŶ�ŝŶƚŽ�ǁĞĞŬƐ�ĞǀĞŶ�ƵƐŝŶŐ�,W��ĨĂĐŝůŝƚŝĞƐ͘�

dŚŝƐ�ĞǆƉŽƐĞƐ�Ă�ŶĞĞĚ�ƚŽ�ďƵŝůĚ�ƐĞůĨͲŽƌŐĂŶŝǌŝŶŐ͕�ĐŽŵƉŽƐŝƚŝŽŶĂů�;ŚŝĞƌĂƌĐŚŝĐĂůͿ�ůĞĂƌŶŝŶŐ�ĂƌĐŚŝƚĞĐƚƵƌĞƐ�ƚŚĂƚ�ĂƌĞ͕�
ďǇ�ĚĞƐŝŐŶ͕�ĐĂƉĂďůĞ�ŽĨ�ŵŽĚĞů�ƌĞĨĂĐƚŽƌŝŶŐ�ĂŶĚ�ůĞĂƌŶŝŶŐ�ĚĞĞƉ�ƐĞŵĂŶƚŝĐƐ͘�&Žƌ�ĞǆĂŵƉůĞ͕�ǁĞ�ĂŶƚŝĐŝƉĂƚĞ�ƚŚĂƚ�
ƚŚŝƐ�ŶĞĞĚƐ�Ă�ƉĂƌĂĚŝŐŵ�ƐŚŝĨƚ�ĂǁĂǇ�ĨƌŽŵ�ůĞĂƌŶŝŶŐ�ĂŶĚ�ƐŚĂƌŝŶŐ�ŽĨ�ƐŝŵƉůĞ�ĂŶĚ�ĐŽŵƉůĞǆ�ĨĞĂƚƵƌĞƐ�ƚŽǁĂƌĚƐ�
ůĞĂƌŶŝŶŐ�ŝŶǀĂƌŝĂŶĐĞƐ͘�dŚĞ�ůĞĂƌŶŝŶŐ�ĂƌĐŚŝƚĞĐƚƵƌĞ�ƐŚŽƵůĚ�ďĞ�ĐŽŵƉŽƐĞĚ�ŽĨ�ĐŽŵƉƵƚĂƚŝŽŶĂů�ƵŶŝƚƐ�;ŵŽƚŝĨƐͿ�
ƚŚĂƚ�ĂůůŽǁ�ƐŚĂƌŝŶŐ�ĂŶĚ�ĐŽŶƐƚƌƵĐƚŝŽŶ�ŽĨ�ŶĞƐƚĞĚ�ŝŶǀĂƌŝĂŶĐĞƐ͘�dŚŝƐ�ǁŽƵůĚ͕�ŝŶ�ƚƵƌŶ͕�ŵĂŬĞ�ƚŚĞ�ĂƌĐŚŝƚĞĐƚƵƌĞ�
ĐĂƉĂďůĞ�ŽĨ�ƐŚĂƌŝŶŐ�;ƌĞƉůŝĐĂƚŝŶŐͿ�ƚŚĞƐĞ�ŵŽƚŝĨƐ�ĂŶĚ�ŝŶǀĂƌŝĂŶĐĞƐ�ĂĐƌŽƐƐ�ƚŚĞ�ŶĞƚǁŽƌŬ�ƚŚƵƐ�ĞŶĂďůŝŶŐ�ĨĂƐƚĞƌ�
ůĞĂƌŶŝŶŐ�ĂƐ�ǁĞůů�ĂƐ�ůĞĂƌŶŝŶŐ�ŽĨ�ŶŽǀĞů�ĐŽŶĐĞƉƚƐ�ŝŶ�ĂŶ�ĞĨĨŝĐŝĞŶƚ�ŵĂŶŶĞƌ͕�ƉĞƌŚĂƉƐ͕�ĂƉƉƌŽĂĐŚŝŶŐ�ŚƵŵĂŶ�
ĐĂƉĂďŝůŝƚŝĞƐ�ŽĨ�ŶĞĂƌ�ǌĞƌŽͲƐŚŽƚ�Žƌ�ŽŶĞͲƐŚŽƚ�ůĞĂƌŶŝŶŐ͘�tĞ�ĞǆƉĞĐƚ�ƚŚĂƚ�ƐƵĐŚ�ŵŽƚŝĨƐ�ǁŝůů�ďĞ�ĂǀĂŝůĂďůĞ�ƚŽ�ƵƐ�
ƚŚƌŽƵŐŚ�ƚŚĞ�ǁŽƌŬ�ĐĂƌƌŝĞĚ�ŽƵƚ�ŝŶ�d�ϯ͘�EĞǀĞƌƚŚĞůĞƐƐ͕�ŝŶ�ĂŶƚŝĐŝƉĂƚŝŽŶ͕�ŽƵƌ�ĂƉƉƌŽĂĐŚ�ǁŽƵůĚ�ĞŶŐŝŶĞĞƌ�ƐƵĐŚ�
ĂƌĐŚŝƚĞĐƚƵƌĞƐ�ŝŶƐƉŝƌĞĚ�ĨƌŽŵ�ĞǆƚĂŶƚ�ŬŶŽǁůĞĚŐĞ�ĂďŽƵƚ�ĐŽƌƚŝĐĂů�ĐŝƌĐƵŝƚƌǇ͕�ĨƌŽŵ�ƚŚĞ�ůĞǀĞů�ŽĨ�ƚŚĞ�ŶĞƵƌŽŶƐ�ƚŽ�
ŶĞƵƌĂů�ŵŝĐƌŽĐŝƌĐƵŝƚƐ�ĂŶĚ�ĐŽƌƚŝĐĂů�ĐŽůƵŵŶƐ�ǁŝƚŚ�ƚŚĞ�Ăŝŵ�ƚŽ�ŝŶŐĞƐƚ�ŵŽĚĞůƐ�ĨƌŽŵ�d�ϯ�ĂƐ�ĂŶĚ�ǁŚĞŶ�ƚŚĞǇ�
ďĞĐŽŵĞ�ĂǀĂŝůĂďůĞ͘

dĞĂŵ�^Z/�ŚĂƐ�ǀĂƐƚ�ĞǆƉĞƌŝĞŶĐĞ�ŝŶ�ďƵŝůĚŝŶŐ�ůĂƌŐĞ�ĂŶĚ�ĐŽŵƉůĞǆ�ŵĂĐŚŝŶĞ�ůĞĂƌŶŝŶŐ�ƐǇƐƚĞŵƐ�ĨŽƌ�ƐƉĞĞĐŚ͕�ŝŵĂŐĞ�
ĂŶĚ�ǀŝĚĞŽ�ƉĂƌƐŝŶŐ�ĂŶĚ�ƵŶĚĞƌƐƚĂŶĚŝŶŐ�ĨŽƌ�Ă�ǀĂƌŝĞƚǇ�ŽĨ�ŐŽǀĞƌŶŵĞŶƚ�ĂŶĚ�ĐŽŵŵĞƌĐŝĂů�ĂƉƉůŝĐĂƚŝŽŶƐ͘�^Z/�
ŚĂƐ�ŽŶĞ�ŽĨ�ůĂƌŐĞƐƚ�ĐŽŵƉƵƚĞƌ�ǀŝƐŝŽŶ�ĂŶĚ�ŵĂĐŚŝŶĞ�ůĞĂƌŶŝŶŐ�ŐƌŽƵƉƐ�ŝŶ�ƚŚĞ�ĐŽƵŶƚƌǇ�ĂŶĚ�ƐĞǀĞƌĂů�ĚĞĐĂĚĞƐ�
ŽĨ�ĞǆƉĞƌŝĞŶĐĞ�ŝŶ�ǁŽƌŬŝŶŐ�ŽŶ�ƌĞůĂƚĞĚ�ƉƌŽũĞĐƚƐ�ǁŝƚŚ�Ăůů�ŐŽǀĞƌŶŵĞŶƚ�ĂŐĞŶĐŝĞƐ͘��ǆĂŵƉůĞ�ĚŽŵĂŝŶƐ�ŝŶĐůƵĚĞ�
ŚƵŵĂŶ�ďĞŚĂǀŝŽƌ�ŵŽĚĞůŝŶŐ�ĂŶĚ�ĂŶĂůǇƐŝƐ͕�ƌŽďŽƚŝĐƐ͕�ďŝŽŵĞƚƌŝĐƐ͕�ƐĞĐƵƌŝƚǇ�Θ�ƐƵƌǀĞŝůůĂŶĐĞ͕�ĂŶĚ�ŚĞĂůƚŚĐĂƌĞ͘��ƌ͘�
'ƌĂŚĂŵ�dĂǇůŽƌ�;h͘�'ƵĞůƉŚͿ�ŚĂƐ�ĞǆƚĞŶƐŝǀĞůǇ�ǁŽƌŬĞĚ�ŽŶ�ĚĞĞƉ�ůĞĂƌŶŝŶŐ�ĂƌĐŚŝƚĞĐƚƵƌĞƐ�ǁŝƚŚ�ĂŶ�ĞŵƉŚĂƐŝƐ�ŽŶ�
ƚŝŵĞ�ƐĞƌŝĞƐ�ĚĂƚĂ�ǁŝƚŚ�ĂƉƉůŝĐĂƚŝŽŶƐ�ŝŶ�ĐŽŵƉƵƚĞƌ�ǀŝƐŝŽŶ͕�ŵŽƚŝŽŶ�ĐĂƉƚƵƌĞ͕�ĐůŝŵĂƚĞ�ĚĂƚĂ͕�ƐƉĞĞĐŚ�ƌĞĐŽŐŶŝƚŝŽŶ�
ĂŶĚ�ĨŝŶĂŶĐĞ͘

tĞ�ĂƌĞ�ŝŶ�ƚŚĞ�ƉƌŽĐĞƐƐ�ŽĨ�ƉƵƚƚŝŶŐ�ƚŽŐĞƚŚĞƌ�Ă�ƐƚƌŽŶŐ�ƚĞĂŵ�ǁŝůů�ĐŽŵƉůĞŵĞŶƚĂƌǇ�ĐĂƉĂďŝůŝƚŝĞƐ�ƚŽ�ďƵŝůĚ�ƚŚĞ�
ŶĞǆƚ�ŐĞŶĞƌĂƚŝŽŶ�ŽĨ�D>�ĂƌĐŚŝƚĞĐƚƵƌĞƐ�ĨƌŽŵ�ĐŽƌƚŝĐĂů�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶƐ͘�tĞ�ĂƌĞ�ƐĞĞŬŝŶŐ�ĐŽůůĂďŽƌĂƚŝŽŶƐ�ŝŶ�ƚŚĞ�
ĂƌĞĂ�ŽĨ�ĐŽŵƉƵƚĂƚŝŽŶĂů�ŶĞƵƌŽƐĐŝĞŶĐĞ�ƚŽ�ďƌŝĚŐĞ�ƚŚĞ�ŐĂƉ�ƚŽ�d�ϯ͘

Maneesh Singh
SRI International - Princeton


