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Motivations

Structured mircocircuit

Target system: visual pathway

• Compuation architectures based on neual systems can 
have many advantages over traditional computers.

• Develop cortical based architectures by  integrating theory 
and connectomics:

• Evidence from biology

• Powerful in engineering

• Uncertain how to compute

• Need experiments to complement theoretical 
development

from Douglas and Martin (2004)

Overcomplete representation

Sparse coding

Hierarchical Inference

Team expertise: 
working at the interface of principled 

theory and biology

1.25x 10x

from Olshausen (2013)

from Rehn and Sommer (2007)

from Vinje and Gallant(2002)
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from Zhu and Rozell (2013)

Adapted from Barlow (1981)

• Ubiquitous feedbacks between hierarchies

• Important potential roles of feedback: attention, 
  prior information ("explaining away").

• Promising theory: hierarchical Bayesian inference.

• Lack of concrete implementation.

• Learn from connectomics

Connectomics informed modeling

from Khosrowshahi (2011)
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from Martinez et al. (2013)

Neuromorphic design

(a) RASP 2.9v. (b) Conceptual diagram.

from Shapero et al. (2013)

. . .

image data ‘V1’ ‘V2’
Adapted from Lee and Mumford (2003)

Adapted from Sherman and Guillery (2011)

LABORATORY FOR

NEUROENGINEERING

 Large scale data analysis and modeling

Computing in neural architectures

from Rozell et al. (2008)

- Connectomics can inform the design of these 
architectures.
- Theory can inform the computational goals.

• Problem: difficult to interpret large scale connectome.

• Targeted investigation: the visual system.
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from Sceniak et al. (1999) from Zhu and Rozell (2013)
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Research	
  areas	
  of	
  interest	
  
•  Sparse	
  coding	
  models	
  of	
  
V1	
  informed	
  by	
  fine-­‐
grained	
  anatomy	
  and	
  
physiology.	
  

•  Models	
  of	
  hierarchical	
  
inference	
  in	
  the	
  thalamo-­‐
cor(cal	
  visual	
  pathway.	
  

Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 
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FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

. . .

image data ‘V1’ ‘V2’



Unique	
  qualifica3ons	
  and	
  capabili3es	
  
•  Sparse	
  coding	
  models	
  and	
  unsupervised	
  
learning	
  algorithms.	
  

•  Biophysically	
  realis(c,	
  mechanis(c	
  models.	
  
•  Analysis	
  of	
  neurophysiological	
  data.	
  
•  Bayesian	
  inference	
  in	
  genera(ve	
  models.	
  
•  Signal	
  processing	
  and	
  compressed	
  sensing.	
  
•  Computer	
  vision	
  and	
  image	
  analysis.	
  



Needs	
  
•  Connectomics	
  data	
  on	
  V1:	
  thalamo-­‐cor(cal	
  
projec(ons,	
  cor(cal	
  microcircuits,	
  and	
  
feedback	
  projec(ons	
  from	
  V2.	
  

•  Large-­‐scale	
  physiological	
  recording	
  data	
  from	
  
V1	
  popula(ons,	
  especially	
  layer	
  4	
  –	
  e.g.,	
  two-­‐
photon	
  Ca++	
  imaging.	
  

•  Exper(se	
  in	
  handling	
  and	
  interpreta(on	
  of	
  
connectomics	
  data.	
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