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• Compiler-based VM below operating system

• Enforces safety properties via analysis and transformation

• Supports type-unsafe languages (e.g., C/C++)

• Supports application/kernel code (e.g., Linux)
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Certifying Compilation
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Building blocks for a complete system solution

• Virtual instruction set

– Comprehensive software representation (source code unnecessary)

– Special instructions make OS, system calls easier to analyze

– Sophisticated analysis capabilities

• Single, unified certification strategy for all software

• Ready to go:

– Linux 2.4 ported; Linux 2.6 port underway

– Memory safety for applications and entire Linux kernel 

[PLDI 2006, SOSP 2007, Usenix Sec. 2009]

Advantages of our Approach



• Formal Methods

– Formal framework for security certification

• Static analysis for security properties

– Can operate on SVA bytecode (no source needed)

– Orthogonal to run-time fault detection, isolation in SVA

• Browser Security

– Web apps an important class of application

– Many browser vulnerabilities orthogonal to system software bugs

– Browser is model of extensible, open platforms

Seeking Capabilities In…


