
Certifying Compilation with 

Secure Virtual Architecture

Vikram Adve

Associate Professor

University of Illinois at Urbana-Champaign

vadve@illinois.edu

(217) 244-2016

http://llvm.org/~vadve



• Compiler-based VM below operating system

• Enforces safety properties via analysis and transformation

• Supports type-unsafe languages (e.g., C/C++)

• Supports application/kernel code (e.g., Linux)

External Compilers/Checkers

SVA Virtual Machine

Operating System

Applications, Servers

Processor

Virtual instruction set

Native instruction set

Proof Checker

Criswell et al., [SOSP 2007]

Secure Virtual Architecture



Certifying Compilation

Trusted Computing Base

Software

as SVA

bytecode

SVA

bytecode

verifier

SVA to 

native

codegen

Boot or

Load

Offline or online

Verifier is far simpler than the 

safety checking compiler

SVA-OS

Library

Link

No need for source: software 

shipped as bytecode



Building blocks for a complete system solution

• Virtual instruction set

– Comprehensive software representation (source code unnecessary)

– Special instructions make OS, system calls easier to analyze

– Sophisticated analysis capabilities

• Single, unified certification strategy for all software

• Ready to go:

– Linux 2.4 ported; Linux 2.6 port underway

– Memory safety for applications and entire Linux kernel 

[PLDI 2006, SOSP 2007, Usenix Sec. 2009]

Advantages of our Approach



• Formal Methods

– Formal framework for security certification

• Static analysis for security properties

– Can operate on SVA bytecode (no source needed)

– Orthogonal to run-time fault detection, isolation in SVA

• Browser Security

– Web apps an important class of application

– Many browser vulnerabilities orthogonal to system software bugs

– Browser is model of extensible, open platforms

Seeking Capabilities In…


