On-Demand Digital Fabrication and Computational Design Method for E-Textile

Prime contractor: Palo Alto Research Center, Inc. (PARC);
Technical POC: Qian Ye, Giovanna Bucci, Anurag Bhattacharyya, Morad Behandish
Integration?

1. Fabrication: Textiles and electronic components
2. Design (an automated design approach):
 - Energy level
 - Self-powered e-textile
 - Multi-scale and multi-material

Fabrication and Design are interdependent:
Fabrication constraints the design
Design enables fabrication
1. Fabrication: Development of Fabrication Technologies for E-textiles

Belt-in
- Ease of implementation
- Accessories with fewer consideration of stretchability

Adhere/Glue
- Flexible and Stretchable
- Weak Bonding

Sew-in
- Interlocking network of threads
- Large deformation
- Fabrication

Integration level of E-textiles

- **What’s ongoing and what’s next??**
 - Fully compatible the garment industry (weaving, knitting, etc.)
 - **Adapt the pros of fabric:**
 - Soft, soft, conformal to body shape, washable…
 - Scalable

A wearable Electronic heating device

A hybrid flexible electronics

Electronic devices embedded into knitted fabric
(Wicaksono et al. 2020)
1. Development of Fabrication Technologies for E-textiles

What’s Next: Digital Fabrication Technologies e.g., conformal weaving

A method to design and weave a conformal flexible electronics on surface

Manufacturing:

- **2D-printable electronics**: more reliable, efficient, and economical.
- Surface **shaped directly** during weaving: no stretching, bending only

Method:

- Threads: dense **without self-intersection**
- **Automatic pipeline** suits for surfaces of various topologies

© 2022 PARC All Rights Reserved, please limit distribution to IARPA SMART ePANTS related purposes
The interconnection between design problems and performance in E-textiles

How to intelligently design to achieve better performance?

- Computational Tools: Multi-physics simulation + Computational design (e.g., TopOpt + AI)

Device position
Topology/Size/Dimensions
Connectivity
Fabrication

Device position
Power
Topology/Size/Dimensions
Connectivity
Fabrication

Power
Thermal
Durability/Comfortableness
Weight
Functionality

Functionality

Power

Design Components:

Performance Evaluations:

© 2022 PARC All Rights Reserved, please limit distribution to IARPA SMART ePANTS related purposes

Plus: the design components interact with each other as well.
Learning loop for robust-automated design

Design optimization

- Objectives
 - Performance
 - Manufacturability

Sensitivities

Update design

Parameter and loading condition distributions
Computational Models/ Upscaled constitutive models

Experiments Validation and data acquisitions
2. Design Problem 1: Improve the Integration Level of Energy Consumption

Design a Self-powered E-textile system

Energy Harvesting from body movement

- Flexible Piezoelectric Nanogenerators (PENGs)
- Flexible Triboelectric Nanogenerators (TENGs)

Printed battery

- Design considerations:
 - Manufacturing constraint: e.g., ability to be printed
 - Flexible

Current challenges:
1. Understand the multi-physics problem
2. Automated design

- Ceramic Li-ion conductor
- Polymer Li-ion conductor
- Carbon (electronic conductor)

Ryan R. Kohlmeyer et al. https://pubs.rsc.org/en/content/articlelanding/2016/TA/C6TA07610F

Tural Khudiyev et al. https://doi.org/10.1016/j.mattod.2021.11.020
3. Design Problem 2: Improve the Integration Level of Multi-material and Multi-scale

- Challenges and limitations: reliability under large deformation, fabrication cost
- Opportunity: e.g., Topology Optimization

Textile Design

- Schematic of optimized flexible electronics design on a human face surface

E-textile: a multi-material and multi-scale

- Rigorous homogenization:
 - upscale nonlinear equations with guarantees

A Symbolic Upscaling from the cell-scale to the battery pack-scale (DARPA-CompMods)

Structural Design

- Challenges: cycling stability, nano-cracks, wrinkling due to the Poisson effect
- Opportunities:
 - Meta-material design:
 - Self sensing/active/ resilient: Active material

Interactive with the environment (Haptics)

Why PARC

- Open Innovation business model, a portfolio of **novel technologies**, and decades of experience across industries, cultures and technological disciplines.

- Our approach to scientific creativity is unique because we form a custom, **multi-disciplinary team** for every project or partnership.

- This approach to combining expertise and capabilities has led to some of our most exciting R&D, technology and IP projects with startups, government agencies and Fortune 500 partners. We firmly believe that it’s this continuous evolution that keeps us at the cutting edge of innovation, able to rapidly build and combine the right capabilities for your needs across the technology spectrum.