Ultra Low Power Electronics for Undetectable ASTs

Ben Calhoun
University of Virginia
May 2022
bcalhoun@virginia.edu
Advanced Smart Textiles (ASTs) are Power-Limited

- Any AST using conventional chips will need a “puck” to house batteries and electronics somewhere in the system
- **Get the puck out** → lower power to microwatt range
- To **integrate in textiles or fiber**, we need a distributed network of components with integrated power & data

Segment SoC (System on Chip)
- 1.5 nW to 10 nW
- MCU, SRAM, bus, DC-DC, harvesting, temp sensor

Fiber Development (MIT-LL)
UVA Systems-on-Chip: Do a lot for μWs!
Integration with Fiber and Fabrics

- Components placed around garment
 - Multiple techniques
- Collaborations to show variety of integrated components and technology options

Into Fiber: integrated bus and power
(MIT-LL)

Into textiles: sensors, energy harvesting, interconnect, antennas, energy storage
(ASSIST Center, NCSU)

Embroidered components: sensors, energy harvesting, textile actuators
(Sarah Sun, UVA)
System integration

- Distributed network of components with integrated power & data
- Components support IARPA use case at microwatts or below

Sensing: Audio sensing, imaging w/ detection
(Dennis Sylvester, UMich)
- 142nW Voice Activation
- Analog front end, mic
- Neural net classifier
- mm-scale imaging

Sensing: GPS
(Dave Wentzloff, UMich)
- GPS AFE: 13μW to 10mW
- 100ms RF recording time
- 32 satellite search
- 28 days of fixes stored
- Battery or PV powered

Power: DC-DC conversion, energy storage, energy harvesting
(UVA)
- ~90% efficient at nW to μW
- Multiple in, multiple out
- Store: battery or supercap
- Harvest: light, temp, motion

Data, memory, processing, communications
(UVA)
- Lowest power SRAM: <nW
- Non-volatile memory: μW
- Digital acceleration and processing
- Wakeup RX: -110dBm at <100nW