Intelligence Advanced Research Project Activity (IARPA) Proposers’ Day

Space debris Identification and Tracking (SINTRA)

Wednesday, August 10, 2022

Plasma Phenomenology

Space Debris Detection Studies

John Petillo, Leidos Center for Electromagnetic Science

PR Approval: 22-leidos-0805-24704
Leidos Innovation Center (LInC) Mission:
To research, develop, and transition innovative
technologies and solutions for customers and the Leidos enterprise

- The Center for Electromagnetic Science
 - Physics / plasma physics / fusion
 - EM Simulation - semi-analytic to 1st principles
 - Computational plasma & RF physics
 - Electromagnetics / Vacuum electronics

- First-principles physics code development
 - EM/ES PIC code
 - Material emission physics model development
 - Ionization/charge exchange
 - Molecular dynamics (direct Coulomb interactions)

- Core R&D areas: Signal detection/processing
 - Air & Space ISR
 - Electronic warfare / CBRN sensing
 - Advanced analytics and machine learning

- Some Applications
 - Plasma physics
 - Particle accelerators
 - High-Power microwave sources
 - Adaptive radar countermeasures
 - Space payloads

Gridded Electron Gun
Ion Thruster
Electrons
Multi-charge state ions
Neutrals
Charge exchange
Image charges
Plasma sheath

RF Amplifier
High-power
Wide-bandwidth
Charged particles interacting
with electromagnetic fields

Physics Code Development
Molecular Dynamics
Electro- / Magneto-statics
RF/Electromagnetic PIC

Ka-band CC-TWT

Molecular Dynamics
Multi-species / charged particle
Electro- / Magneto-static optics
Image charges

5 Generations Secondaries
First Principles Codes:
Simulate conditions leading to enhanced cross section
- Phenomena: solitons, plasma waves/disturbances

- MICHELLE-eBEAM (Leidos)
 - Direct Coulomb interactions
 - Molecular Dynamics
 - Dielectric interactions/charging
 - Emission physics

- MICHELLE (Leidos)
 - Electrostatic Particle-in-Cell (SS / TD ES-PIC)
 - Plasma/Acoustic Waves
 - Emission, ionization, charge exchange
 - Dielectric interactions/charging

- ICEPIC (AFRL) & NEPTUNE (NRL)
 - Electromagnetic Particle-in-Cell (EM-PIC)
 - RF effects
 - RF interacting with partially ionized plasmas

Wide simulation capabilities and simulation model development experience for plasma phenomenology
Application of Relevant Capabilities

- Particle Physics / Plasma Phenomenology:
 - First principles modeling of the parameter space covering small scale space debris in the ionosphere enables…
 - Understanding of the conditions debris will present
 - Intuition development of the phenomenology
 - Under what conditions would solitons develop?
 - Research alternative phenomenologies that may lead to detection

- RF Engineering and Detection
 - Understanding fields levels, signals, and signal levels
 - Understanding the effectiveness of radar sensing
 - Design/Develop of detection platform solution