Generation of Mid-infrared Frequency Combs on a Silicon Chip

Michal Lipson School of Electrical and Computer Engineering

Alexander Gaeta School of Applied and Engineering Physics

Cornell University

IARPA SILMARILS Proposers Day Workshop January 20, 2015

Comb Generation via Parametric Four-Wave Mixing Oscillation in Microresonators

Octave-Spanning Combs in Near Infrared in Si₃N₄

- Stable, robust, highly compact.
- Modest power requirements (~ 400 mW).

Chip-scale comb source: 10 - 1000 GHz comb spacing $0.8 - 8 \mu m$ wavelength range

Silicon-Based Microresonators for Parametric Comb Generation

- CMOS-compatible material
- Fully monolithic and sealed structures and couplers
- High-Q resonators $\rightarrow Si_3N_4 Q = 7 \times 10^6$ [Luke, et al., *Opt. Express* (2013).]

Si $Q \sim 10^6$ [Lee, et al., (2013).]

- High nonlinearity $\rightarrow n_2 \sim 10-100 \times \text{ silica}$
- Waveguide dispersion can be engineered [Foster, et al., Lipson, Gaeta, *Nature* **441**, 960 (2006).

Tailoring of Dispersion in Si-Based Waveguides

Mid-IR Parametric Frequency Comb in Si₃N₄ Microresonators

- Used improved fabrication process (DSP substrates, anneal mid-deposition, anneal cladding oxide)
- Demonstrated record Q of 1 million at λ = 2.6 μm

Mid-IR Parametric Frequency Comb in Silicon Microresonators

- Q-factor ~10⁶
- Measurement with FTIR OSA
 Bandwidth limited by dynamic range of OSA

^ower (dBm)

- 2608-nm pump
- 750-nm bandwidth
- 125-GHz FSR (100 µm radius)

