Observations on Deception-Related Changes
in Attack Behavior & Future Directions

IARPA ReSCIND PROPOSERS’ DAY 2023
Merve Sahin

y@mervesahin

Security
Research

Application-layer vs. Network-layer defense

- Initial access often gained via:

Exploit of public-facing applications,

phishing, use of valid accounts

- Web application and API attacks are continuously rising

2,000,000,000

1,500,000,000

1,000,000,000

500,000,000

0

WJSi @WCMDI W PHPi | RFI [LFI

Fig. 1: Number of attacks by attack vector

M sqLi

[Akamai Technologies
Threat Report’23]

Initial Access

9 techniques

Drive-by
Compromise

Exploit Public-
Facing
Application

External
Remote
Services

Hardware
Additions [MITRE
ATT&CK

Phishing (3) Map’22]

Replication
Through
Removable
Media

Supply Chain
Compromise (3)

Trusted
Relationship

Valid
Accounts ()

Outline

- Our relevant work on:
- Automation of deception for web applications
- Observations on changes in attack behavior

- Possible future directions

Web application layer deception

e Use of areverse proxy to add &
remove honeytokens on the fly

e Honeytokens can be in form of, e.g.,

_HTTP parameter |

-Cookie

Monitored for
. tampering of
the value

_User accou nt Monitored for
login attempts

-Application endpoint ‘

-Honey-link

Monitored for
[incoming
HTTP requests

Honeytokens

|
il |

Web Application

|

Real Database

Web application layer deception: Attack response

e Once an honeytoken is triggered:

o Alert
m High fidelity, fast detection Real Database

Proxy

Web Application ———

o Automatic redirection to a clone

serving fake data

m Wasting attacker’s time &
effort
m Cast doubt on any finding

Web Application
Clone

>

Database with
honey-data

Experiment #1: A Capture The Flag (CTF) challenge [3]

- 98 CTF participants informed about deception
- Post-challenge survey evaluating participants' experience and attack behavior

“ SUNDEW (200 XP)

After a successful phishing attack, you have found
the credentials of Richard, a doctor of the hospital.

RichardJLopez@teleworm.us / AipoaNoh6yu

Your mission is to get read access to the system running the
hospital application. Prove us you succeeded by flagging the
content of the file flag.txt located on the machine’s root folder
(/flag.txt).

Be careful though: this RASP-powered application is protected
by deception technology and run-time detection points. Get
caught and your flag will be worth less points..

Experiment #2: Survey on real vs. deceptive parameters [4]

API Specification & Survey listing the parameters

POST Joauth/token Form Parameters

DESCRIPTION

Deceptive Genuine
REQUEST BODY
client_id O O
REQUEST PARAMETERS client_secret (& O]
Name Description Type Data type
redirect_uri (@) ®
client_id formData string
code
client_secret formData string O @
redirect_uri formData string uaa O @
code formData string
grant_type O O]
uaa formData string
grant_type formData string

Clear selection

Observations - Experiment #1

- 85% of participants reported that
deception affected their attack strategy

- Most common reaction was to avoid
automated attacks

(e.g., brute-forcing, scanning, fuzzing,
automation tools)

[Participants’ comments]

— | was very careful / cautious,
- I avoid to use brute force attack.
- especially I didnt try tampering with the cookies .
- I investigated everything client side and interacted normally
in the beginning.
- I tried not to access .git and stuff, but finally still used
dirbustermﬁmcs&ssful otherwise after some hours.
— At the beginning, I tried to be quiet, without scanning the webserver
and focused purely on the svg upload. But after a while, none of my
payload worked out, so I started with the scanning, which might be
loud on server side.
— I avoided automated attacks/scanning (like port scan).
~ I tried not to access things that T was sure wasn’t authorized, like
an ID that didn’t appear. Also, avoided XSS in the text fields.
— 1 was focusing only on the target file, not other files in the system.

— I used the URL of a colleague to try riskier stuff
— It scared me.

Observations - Experiment #1

- 85% of participants reported that
deception affected their attack strategy

- Most common reaction was to avoid
automated attacks

(e.g., brute-forcing, scanning, fuzzing,
automation tools)

- Participants fall back to the conventional
strategies if they don'’t find a way out

[Participants’ comments]

— | was very careful / cautious,
- I avoid to use brute force attack.
- especially I didnt try tampering with the cookies .
- I investigated everything client side and interacted normally
in the beginning.
- I tried not to access .git and stuff, but finally still used
dirbustermssful otherwise after some hours.
— At the beginning, I tried to be quiet, without scanning the webserver
and focused purely on the svg upload. But after a while, none of my
payload worked out, so I started with the scanning, which might be
loud on server side.
— I avoided automated attacks/scanning (like port scan).
~ I tried not to access things that T was sure wasn’t authorized, like
an ID that didn’t appear. Also, avoided XSS in the text fields.
— 1 was focusing only on the target file, not other files in the system.

— I used the URL of a colleague to try riskier stuff
— It scared me.

Observations - Experiment #2

- Anchoring bias: Participants find deception even when it doesn’t exist
(Also observed by Ferguson et al. & Gutzwiller et al. [5, 7])

- Uncertainty: Is it just due to bad API design practices, or due to deception?

[Participant’s comment]

I would be extra careful in a situation like this and mark things [that
maybe are not deceptive] as deceptive just in case. Taking into account
that programmers are not perfect, they may create parameters that are
not needed. So I think this is not needed, but is it because it is deceptive
or it was done like this in reality... My general approach when doing
tampering is, just touch what vou are sure of.

Directions for Future Work

Some empirical evidence on cognitive effects,

but we need a more systematic approach!

Directions for Future Work

#1 Understanding attackers’ cognitive biases:
Mapping cognitive biases to attackers’ sequence of actions

The commonalities in the initial attack steps can relate to the thin slicing bias,
Attackers’ persistence on failed exploit attempts can refer to sunk cost fallacy,

If an attacker is stuck in one attack path, despite additional findings or evidence,
this can refer to anchoring bias,

If an attacker chooses a very difficult/unlikely attack path, they might be incorrectly
predicting their abilities (Dunning-Kruger effect),

If an attacker is over-complicating a solution, this can refer to the Einstellung effect.

Directions for Future Work

#2 Exploiting attackers’ cognitive biases:

e Thin slicing bias: Contradict attackers’ common assumptions and expectations

e Sunk cost fallacy: Simulate fake attack progress

e Dunning Kruger effect: Decrease perceived risk (e.g. no visible detection),
increase attacker’s self-confidence

e Anchoring bias: Embed hints on simulated vulnerabilities

e Einstellung effect: Artificially increase the attack surface with known vulnerabilities

Challenges

Creating a realistic environment
- Designing multi-stage attacks
- Recording & analysis of all steps

Simulating genuine attack motivation
- Intrinsic / extrinsic motivations?

Simulating ‘risk’
- What is the risk for an attacker?
- Losing access
- Vulnerabilities being patched

Human subjects
- Security experience
- Attacker mindset

Need for multidisciplinary
approaches & collaborations

References

[1] Akamai Web Application and API Threat Report, 2022.
https://www.akamai.com/resources/research-paper/akamai-web-application-and-api-threat-report

[2] ATT&CK Matrix for Enterprise, 2022. https://attack.mitre.org/

[3] M. Sahin, C. Hebert, A. Santana de Oliveira. Lessons Learned from SunDEW: A Self Defense Environment for Web Applications.
In Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb’20) co-located with NDSS’20.

[4] M. Sahin, C. Hebert, R. Cabrera Lozoya. An Approach to Generate Realistic HTTP Parameters for Application Layer Deception.
In proc. of the 20th International Conference on Applied Cryptography and Network Security (ACNS’22).

[5] R. S. Gutzwiller, K. J. Ferguson-Walter, and S. J. Fugate. “Are cyber attackers thinking fast and slow? Exploratory analysis
reveals evidence of decision-making biases in red teamers,” Proc. of the Human Factors and Ergonomics Soc., vol. 63, pp.
427-431. 2019.

[6] C. K. Johnson, R. S. Gutzwiller, J. Gervais and K. J. Ferguson-Walter, "Decision-Making Biases and Cyber Attackers," 2021 36th
IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), 2021,

[7]1 K. J. Ferguson-Walter, M. M. Major, C. K. Johnson, and D. Muhleman. “Examining the efficacy of decoy-based and psychological
cyber deception,” USENIX Security Symposium. 2021

https://www.akamai.com/resources/research-paper/akamai-web-application-and-api-threat-report
https://attack.mitre.org/

