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Quantum Annealing Testbed Concept
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Develop technologies that enable a validated basis of design for application-scale 

quantum annealing machines that provide quantum-enhanced performance
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QEO Implementation Overview
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Many requisite QEO technologies incubated in the IARPA CSQ program
(high-coherence materials & qubits, noise & variability characterization, high-fidelity readout, é)
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QEO Implementation Team
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Å Quantum Information and Integrated Nanosystems Group, MIT-LL

ï Device design, 

ï Materials & fabrication 

ï 3D integration & control electronics 

ï Quantum annealing testbed development

ï Advanced annealing protocol development

Å Orlando group, MIT Campus

ï Advanced spin qubit development

ï Noise, variability, control characterization

Å Clarke and Siddiqi groups, UC Berkeley

ï Flux noise characterization with DC SQUIDs

ï Scalable, quantum-limited readout development

Å These teams worked together in the IARPA CSQ program

Many requisite QEO technologies incubated in the IARPA CSQ program
(high-coherence materials & qubits, noise & variability characterization, high-fidelity readout, é)
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QEO Experimental Overview

Å Introduction

ï Tasks

ï Teams

Å Approach & motivation

ï 3D integration

ï Tunable, high-coherence qubits

Å Supporting technologies

ï High-Q materials & fab

ï TSVs

ï Flip-chip qubits

ï Electronics

ï J-TWPA

TSV etch

300 mm

45 mm

Coax

shield width

Coaxial TSV
Tilted SEM cross-section 
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Approach to 3D Integration
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QEO Qubit Stacked Module Schematic 
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Goal: Improve test bed performance by maintaining process independence 

for each wafer (layer), allowing each to be separately optimized



slide-7

QEO 11/17/2015

Approach to 3D Integration
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Goal: Improve test bed performance by maintaining process independence 

for each wafer (layer), allowing each to be separately optimized
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Qubit Plane
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1
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QEO Qubit Process Development

Å Substrate preparation

ï Surface reconstruction

ï Si(100) and Si(111)

Å High-Q materials

ï TiN and Al growth

ï Surface passivation layers

Å Noise characterization

ï Resonators, DC SQUIDs, and 
qubits

ï Variability and reproducibility

Å Qubit fabrication processes

ï C-shunt flux qubit (baseline)

ï Crossover development

ï Resonators and DC SQUIDs

Å High-Q fabrication techniques

ï TiN and Al fabrication

ï Sidewall profiles

ï Trenching

ï Post-process cleaning

ï Passivation layers
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TSV and SMCM Planes

TSV and SMCM Processes

parametric readout amplifiers
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2
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TSV Interposer SMCM Plane

Å Thru-silicon vias (TSVs)

ï Shielded / coaxial TSVs

ï High-density qubit arrays

Å Qubit-couplers and readout resonators

ï Reduces crosstalk

ï Higher connectivity

Å Isolation of qubit and SMCM planes

Å Wiring and routing

ï Increased I/O to annealer

ï Room temperature control

Å Qubit readout

ï Traveling wave paramps

ï Frequency multiplexing

Å Leverages IARPA C3 program
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QEO Experimental Overview

Å Introduction

ï Tasks

ï Teams

Å Approach & Motivation

ï 3D integration

ï Tunable, high-coherence qubits

Å Supporting technologies

ï High-Q materials & fab

ï TSVs

ï Flip-chip qubits

ï Electronics

ï J-TWPA 

TSV etch

300 mm

45 mm

Coax

shield width

Coaxial TSV
Tilted SEM cross-section 
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C-Shunt Flux Qubit

C-Shunt Flux Qubit 
with 2D Resonator
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T1 = 55 ms

T2E = 100 ms

Coherence times:

T1 = 55 ɛs at degeneracy (CSQ result)

T2E = 40 ɛsat degeneracy (CSQ result)

Ą 100 ɛsat degeneracy (QEO result)

capacitor

plates

resonator

T1 Measurement
C-Shunt Flux Qubit with 2D Resonator

Energy decay T1

qubit 2

qubit 1

flux qubit

F. Yan et al., arXiv:1508.06299
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C-Shunt Flux Qubit

C-Shunt Flux Qubit 
with 2D Resonator
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F. Yan et al., arXiv:1508.06299
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C-Shunt Flux Qubit

C-Shunt Flux Qubit 
spectroscopy
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F. Yan et al., arXiv:1508.06299
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C-Shunt Flux Qubit

C-Shunt Flux Qubit 
spectroscopy
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Single-loop qubits: tunes Z-field only

Annealing protocols require both Z- and X-

field tunability Ą two-loop flux qubits

F. Yan et al., arXiv:1508.06299
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QEO Tunable C-Shunt Flux Qubits

Single-Loop QubitNon-Gradiometric Two-Loop Qubit
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x
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Bx-field
Z-bias line

Z-tuning Shunt
capacitor

x
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Splitting small junction into a loop with two junctions 

allows for X-field tunability

Crosstalk between X-loop and Z-loop is undesirablex

S. Gustavsson et al., PRB 84, 014525 (2011)
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QEO Tunable C-Shunt Flux Qubits: 
Non-Gradiometric and Gradiometric Configurations

Gradiometric Two-Loop QubitNon-Gradiometric Two-Loop Qubit
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Splitting small junction into a loop with two junctions 

allows for X-field tunability

Gradiometric two-loop design minimizes crosstalk 

between X and Z loops

Tunable C-shunt is the baseline qubit for QEO Study

Z-bias line
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QEO Tunable C-Shunt Flux Qubits: 
Non-Gradiometric and Gradiometric Configurations
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D= 1.3 GHzD= 3.2 GHzD= 3.8 GHzD= 4.5 GHzD= 5.2 GHzD= 5.9 GHzD~ 6.5 GHzD= 7.3 GHz

Qubit Spectra: Z and X Tuning
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+ -Annealing Cheat Sheet

S. Gustavsson et al., unpublished (2015)


