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Fundamental Questions Underlying the 
IARPA QEO Study

ÅUnder what conditions can engineered quantum fluctuations be 

harnessed to enhance classical optimization?

ï The same solutions faster

ï Lower-energy solutions

ï A wider range of solutions

ÅCan application problems be mapped to spin Hamiltonians that may 

satisfy these conditions?

ÅIf so, what are the corresponding design requirements for realistic, 

application-specific QA machines?

Assess theoretical potential and practical plausibility for QA to 

provide disruptive classical optimization capability
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ÅMIT Lincoln Laboratory: Quantum Information and 

Integrated Nanosystems group - W.D. Oliver, A.J. Kerman, 

L. Racz, M. Gouker

ÅMIT EECS Department - T. Orlando and S. Gustavsson

ÅUC Berkeley - J. Clarke and I. Siddiqi

ÅETH Zürich - M. Troyer

ÅTexas A&M University - H. Katzgraber

ÅNASA QuAIL - E. Rieffel (previously: V. Smelyanskiy)

QEO Study Team

IARPA: Karl Roenigk (P.M.), Bryan Jacobs, Krystal Brown
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ÅIntroduction and motivation

ÅOverview of plan developed in QEO study

ÅQEO study concepts and progress

ïPhysical hardware and architecture concepts: this talk

ïMaterials, fabrication, and experiment: Will Oliver ïnext talk

ïTheory and simulation: Matthias Troyer ïfinal talk

Outline

Representing also work of MIT and UCB 

Representing also work of NASA and TAMU
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SFQ digital logic
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ñembeddingò
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D-Wave Systems QA Machines
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Logical states of embedded spin:

Experience with D-Wave platform suggests:

Å Higher dynamic range/precision in parameter setting

Å Greater annealing schedule control and bandwidth

Å Greater Ising connectivity ïlarger quantum fluctuations 

in embedded problems

Logical fluctuations

exponentially suppressed
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D-Wave Systems QA Machines

Å Higher spin coherence

Å Wider range of quantum fluctuations (e.g., multispin, including non-stoquastic) 

and engineered quantum environments

Å Real-time monitoring, with potential for adaptive feedback

Å Quantum error suppression approaches

Å Application-specific architectures

Additional areas of critical interest in QEO

Experience with D-Wave platform suggests:

Å Higher dynamic range/precision in parameter setting

Å Greater annealing schedule control and bandwidth

Å Greater Ising connectivity ïlarger quantum fluctuations 

in embedded problems
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Models for the D-Wave Machine

ñSemiclassicalò methods do not

capture qualitative behavior

Tailored 8-spin 

tunnel barrier

Quantum Monte-Carlo vs. D-Wave Spin-vector Monte-Carlo vs. D-WaveLarger coupled cluster problems

Boixo, et al., 

arXiv:1502.05754

Excellent agreement with incoherent tunneling model

Scalable method for capturing large-scale QA dynamics still lacking

ñTailoredò problem:

two coupled clusters


