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@ Fundamental Questions Underlying the @
IARPA QEO Study

A Under what conditions can engineered quantum fluctuations be
harnessed to enhance classical optimization?

i The same solutions faster
i Lower-energy solutions
I A wider range of solutions

A Can application problems be mapped to spin Hamiltonians that may
satisfy these conditions?

A If so, what are the corresponding design requirements for realistic,
application-specific QA machines?

Assess theoretical potential and practical plausibility for QA to
provide disruptive classical optimization capability
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@ QEO Study Team @

A MIT Lincoln Laboratory: Quantum Information and
Integrated Nanosystems group - W.D. Oliver, A.J. Kerman,
L. Racz, M. Gouker

A MIT EECS Department - T. Orlando and S. Gustavsson

A UC Berkeley - J. Clarke and I. Siddiqi

A ETH Ziirich - M. Troyer

A Texas A&M University - H. Katzgraber

A NASA QUAIL - E. Rieffel (previously: V. Smelyanskiy)

IARPA: Karl Roenigk (P.M.), Bryan Jacobs, Krystal Brown
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@ Outline ﬂ

A Introduction and motivation
A Overview of plan developed in QEO study

A QEO study concepts and progress
I Physical hardware and architecture concepts: this talk

I Materials, fabrication, and experiment: Will Oliver T next talk

[ Representing also work of MIT and UCB ]

I Theory and simulation: Matthias Troyer T final talk

[ Representing also work of NASA and TAMU ]
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@ D-Wave Systems QA Machines
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]gq D-Wave Systems QA Machines

Experience with D-Wave platform suggests:

A Higher dynamic range/precision in parameter setting
A Greater annealing schedule control and bandwidth

A Greater Ising connectivity i larger quantum fluctuations
in embedded problems
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@ D-Wave Systems QA Machines @

Experience with D-Wave platform suggests:

A Higher dynamic range/precision in parameter setting
A Greater annealing schedule control and bandwidth

A Greater Ising connectivity i larger quantum fluctuations
in embedded problems

Additional areas of critical interest in QEO

A Higher spin coherence

A Wider range of quantum fluctuations (e.g., multispin, including non-stoquastic)
and engineered quantum environments

A Real-time monitoring, with potential for adaptive feedback
A Quantum error suppression approaches

A Application-specific architectures

QEO Overview- 9 LINCOLN LABORATORY

AJK'i 10/26/15 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



[E]

Models for the D-Wave Machine
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