Umass mHealthLab: Campus-scale Testbed for Real-time Wearable Sensing and Analytics

Deployment: Ongoing deployment of campus-scale testbed with 500-1000 subjects with continuous data from wearables and mobile devices.

Platform: Scalable platform for streaming data collection from wearable sensors, massively parallel logging, real-time analytics and visualization.

Scalability: Support for thousands of users and devices, diverse machine learning analytics, real-time feedback and interventions.

Analytic: Ingested data immediately available to Machine Learning libraries, live sensor visualizations and dashboards.

MOSAIC: Research Interests and Capabilities

- Large-scale testbed for data collection, algorithm development, and field validation of MOSAIC.
- Scalable open-source platform and real-time machine learning analytics on multi-modal sensor streams; real-time interventions.

Research Areas

Machine Learning for Mobile Health

- **Sensor data analysis**: Wireless ECG morphology extraction using Conditional Random Fields (CRF) and CRF + Context Free Grammar (CRF-CFG) models
- **Multi-modal inference**: Leveraging diverse sensors on wearables and phones using Dynamic Bayesian Networks and CRFs to improve detection accuracy.
- **Ground truth label availability**: Training event detectors using multiple-instance (MI) learning and Active Learning methods.
- **Lab-to-Field generalizability**: Domain adaptation techniques to handle covariate shift, prior probability shift and label granularity shift.

Wearable Sensing & Health Applications

- **Drug usage detection**: Real-time detection of cocaine use in the natural environment using chest worn ECG sensors.
- **Smoking and eating behaviors**: Detection of smoking/eating/drinking behaviors via wrist-worn sensors and hand-to-mouth actions.
- **Group dynamics sensing**: Understanding group dynamics via context sensing, bluetooth interactions and WiFi logs.
- **Fatigue detection**: Fatigue detection using custom-designed low-power computational eyeglasses.
- **Context sensing**: Combining location, time-of-day, physiology (pulse, GSR, ECG, eye movements), behaviors (via hand-to-mouth gestures) for continuous assessment.
- **Neurological, Neuromuscular, and Muscular skeleton disorders**: Novel sensors and remote monitoring systems for stroke, Parkinsons and Osteoarthritis.

Deepak Ganesan, Professor
Prashant Shenoy, Professor
Benjamin Marlin, Assistant Professor
Sunghoon (Ivan) Lee, Assistant Professor

Computer Science
University of Massachusetts Amherst