Vision: Smart and Connected Health

To make low-cost high-performance self-powered disposable sensors for smart and connected health

- **What in inconspicuous them of**
- **Red)**
- **Nanowatt**
- **Galvanic electrochemical sensor to**
- **Sub**
- **or**
- **dispose**
- **false**
- **like**
- **die**
- **and**
- **nanomaterials**
- **for**
- **false**
- **graphene**
- **Physical**
- **itself**
- **CMOS**
- **signal**
- **electronics**
- \[+ 2H \]
- **Distributed layout for higher output impedance**
- **piezoelectric**
- **that**
- **Two pieces of paper for four layer**
- **on**
- **voltage**
- **disposable?**
- **EEG)**,
- **Planar geometry**
- **= we (~**
- **textile**
- **power**
- **which**
- **Printed**
- **Negative impedance source degeneration**
- **transistor**
- **Double**
- **paper**
- **and**
- **Gases,**
- **Filter paper saturated with KOH**
- **–**
- **Low**
- **circuit**
- **to**
- **Sensors**
- **Physical**
- **(right,**
- **on**
- **Activity**
- **T**
- **easy**
- **circuits**
- **Pt Nanowires on paper**
- \[+ 2H \]
- **biopotentials)**
- **do**
- **compounds,**
- **continuous)**
- **are**
- **environment**
- **friendly**
- **Recording**
- **power**
- **Ease**
- **Biopotentials**
- **CMOS**
- **the**
- **You**
- **of**
- **substrates**
- **nanotubes**
- \[+ 2H \]
- **and**
- **substrates**
- **aluminum**
- **copper**
- **in**
- **current**
- **input**
- **input source degeneration**
- **transistor**
- **Double sided double paper**
- **Paper**
- **Silver**
- **Tape**
- **Zinc**
- **Filter paper saturated with KOH**
- **PDMS**
- **membrane is**
- **attached.**
- **Oxidation at Zn anode:**
- \[22n + 22OH^- + 4e^- \]
- **Reduction at Ag cathode:**
- \[O_2 + 2H_2O + 4e^- \]
- **Overall reaction:**
- \[O_2 + 2H_2O + 22n \]
- **PDMS**
- **Double-sided tape**
- **Zinc**
- **Paper**
- **Silver**
- **Tape**
- **Filter paper saturated with KOH**
- Electrodes, Sensors, Batteries, Electronics can all be built on paper using low cost approaches in resource-poor settings with applications in healthcare and environment

Topic 3: Disposable Printed Circuit Boards

- **Disposable paper based oxygen (and other electrochemical) sensor**
- **Two pieces of paper for four layer PCB all on paper**
- **Screen printing for interconnects**
- **and punching for via**
- **Galvanic electrochemical sensor to measure oxygen**

Fabrication Process

1. Tape was patterned
2. Patterned tape is attached.
3. Silver ink is spin coated and cured.
4. Tape was peeled off.
5. Saturated filter paper is attached using double-sided tape.
6. PDMS membrane is attached.

Oxygen Sensor Structure

Front side

- **Zinc is electroplated on one of the electrodes.**
- **PDMS**
- **Filter Paper**
- **Saturated with KOH**
- **Silver**
- **Paper**
- **Tape**

Back side

- **Oxidation at Zn anode:**
- \[22n + 22OH^- + 4e^- \]
- **Reduction at Ag cathode:**
- \[O_2 + 2H_2O + 4e^- \]
- **Overall reaction:**
- \[O_2 + 2H_2O + 22n \]

Electrodes, Sensors, Batteries, Electronics can all be built on paper using low cost approaches in resource-poor settings with applications in healthcare and environment

Topic 4: 0.25V Amplifier and Analog to Digital Converter

0.25V 18nW 60dB OTA

- **Bulk-driven input stage**
- **Sub-threshold operation**
- **Distributed layout for higher output impedance**
- **Negative impedance source degeneration**

0.25V Async Delta Sigma Modulator

- **Single bit First order ADSM Architecture**
- **0.25V Comparator**

Transistor

- **Power supply:** 0.25 V
- **Technology:** 150 nm
- **Transconductance:** 2.8 nS
- **Gain:** 9.3 V/mA
- **Minimum input current:** < 3 nA
- **Open loop gain:** 40 dB
- **Unity gain frequency:** 18.6 kHz
- **Phase margin:** 72.5°
- **Gain-bandwidth:** 0.26 V/μA
- **Input referred thermal noise:** 0.57 nV/√Hz
- **Offset voltage standard deviation:** 2.7 nV
- **Power consumption:** 18 nW
- **OTA area:** 0.083 mm²
- **PVT tolerance:** ±3% to ±7%