Yale University School of Medicine The John B. Pierce Laboratory, Inc.

Our laboratory engineered the best currently available genetically-encodable fluorescent voltage probe (ArcLight) for in vivo use.

Continually engineering newer probes with improved response characteristics

Developed the only wide field (2 x 2 mm), rodent, head mountable, embedded imaging system

Performing experiments combining the above technologies.

- Our group is seeking collaborators to assist in the correlation/feature extraction/classifier analysis of large image stream recordings of motor cortical electrical activity and synchronized high speed image streams of body and limb position
- Groups with experience in electrodebased electrophysiology (i.e. single units, LFPs, etc.)

Optical recording of neuronal electrical activity using novel genetically-encodable fluorescent voltage probes and head mountable high speed imaging systems.

Allows cell type specific, spatially defined, high speed (200-1,000 Hz) image trains of cortical activity in freely moving mammals.

Not currently cellular level resolution. 50-100 µm2 level XY resolution.

Vincent Pieribone

"Extraction of neuronal network processing algorithms from high speed optical recording of membrane potential in genetically defined classes of neurons in motor cortex."

Yale University School of Medicine / The John B. Pierce Laboratory, Inc.

vincent.pieribone@yale.edu (203) 401-6214

http://physiology.yale.edu/pe ople/vincent_pieribone-1.profile