
Proceedings of the Cross-Language Search and Summarization of Text and Speech Workshop, pages 1–6
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

1

The Effect of Linguistic Parameters in Cross-Language Information Retrieval
Performance

Evidence from IARPA’s MATERIAL Program

Carl Rubino
Intelligence Advanced Research Projects Activity (IARPA)

Washington, DC 20511 USA
Carl.Rubino@iarpa.gov

Abstract
In IARPA’s MATERIAL program, choosing languages and acquiring corpora to develop an effective End-to-End Cross-Language
Information Retrieval (CLIR) system for speech and text, and component technologies thereof, was strategically planned to enable
language-independent methods for CLIR development and evaluation. It was believed that a typologically diverse set of languages,
coupled with a heterogeneous evaluation condition would stimulate participating research teams to construct engines that would be
usable in diverse environments and responsive to changing data conditions. This paper will detail how the MATERIAL program investi-
gated certain linguistic parameters to guide the language choice, data collection and partitioning, and better understand evaluation results.
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1. Introduction
IARPA’s Machine Translation for English Retrieval of
Information in Any Language (MATERIAL) program was
launched in 2017 to stimulate research on a wide array
of human language technologies optimized to support
cross-language information retrieval and summarization.
Four multinational teams (led by Columbia University,
Johns Hopkins University, Raytheon BBN and USC-ISI),
chosen via competitive selection, were tasked to build
End-to-End CLIR systems capable of retrieving in a fully
automated way, foreign language speech and text docu-
ments responsive to a new typology of English queries, and
provide evidence or relevance, in English, of the retrieved
documents for human consumption (Rubino, 2017).

Prior to the 2017 kickoff of the program, nearly two years
were devoted to negotiating the data collection, guided
by the program’s strategic evaluation methodology. This
included separate training and testing conditions for both
speech and text, a diverse set of languages to explore, and
challenging development time frames that decreased as the
program progressed.

IARPA collaborated with its Test and Evaluation (T&E)
partners at the University of Maryland’s Center for Ad-
vanced Study of Language (CASL), NSA’s Center for Ap-
plied Machine Translation (CAMT), and MIT-Lincoln Lab-
oratories to choose an optimal mix of diverse languages
which would be incrementally released to the performing
teams to stimulate and measure progress across three pro-
gram periods. Two factors were most critical in initially de-
termining the language choice: typological diversity, mea-
sured by divergent phonological, morphological and syn-
tactic properties, and resource availability. To allow for the
program’s mismatch between the training and testing con-
ditions and the requirement to identify domains without ad-
ditional source language training, the languages eventually

collected and annotated also had to have a substantial pres-
ence on the web. This would enable the performing teams
to harvest relevant data to complement the small training
sets provided by IARPA to seed the CLIR system develop-
ment. Web harvesting was crucial to the program to im-
prove the performance of applications against genres not
represented in the training data, e.g. for speech, all the
training data were conversational telephony, but the eval-
uation condition included broadcast news (Rubino, 2019).
IARPA followed a strict language release schedule, not di-
vulging the language identities until the start of each rele-
vant development phase. This ensured that progress could
be measured temporally and consistently between teams.
As of May 2020, six languages were provided. Listed
in order of release, these were: Tagalog (TGL), Swahili
(SWA), Somali (SOM), Bulgarian (BUL), Lithuanian (LIT)
and Pashto (PUS).

2. The Metrics
It was important to IARPA to evaluate the systems on a
meaningful task-based measure. The primary performance
measure used to assess the CLIR aspect of performer sys-
tems was a novel detection metric, related to the keyword
spotting metric Actual Term Weight Value (ATWV ) used
in the IARPA Babel program (Fiscus et al., 2007). The MA-
TERIAL metric, Actual Query Weighted Value (AQWV ),
expresses an average of all Query Values for a system oper-
ating under its actual decision threshold. This allowed for
all queries to be equally treated regardless of the number
of documents annotated as relevant to them in the ground
truth. Query Value (QV ) is defined as:

QV = 1− PMiss − β × PFA (1)

where PMiss is the probability that a relevant document for
the query will not be detected (a miss against the ground
truth), and PFA is the probability that a non-relevant doc-
ument will be incorrectly detected (a false alarm against
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the ground truth). The parameter β allowed for the relative
weighting of misses and false alarms. It was derived from
the following formula:

β =
C

V
× (

1

PRel
− 1) (2)

where C is the cost of an incorrect detection, V is the value
of a correct detection, and PRel is the prior probability that
a document is relevant to the query. This value changed
under different conditions but will remain constant for all
data described herein. A perfect system that returned all
relevant documents without false alarms would receive a
score of 1. A system that did not return anything would
receive a score of 0. If all the documents a system detected
were false alarms, the score would be -β.

IARPA also provided roughly six hundred translated and
transcribed documents, released as an Analysis Set, to al-
low the teams to measure component progress in speech
recognition and machine translation (MT) using traditional
metrics Word Error Rate (WER) and BLEU, respectively.

3. Linguistic Parameters Measured
Building CLIR systems capable of addressing both speech
and text entails creating multiple component technologies,
then learning how to optimally integrate them for informa-
tion retrieval. Since a primary purpose of the MATERIAL
program was to inspire novel research in both speech and
translation, presumed challenges stemming from linguistic
complexities and language anomalies were actively sought
out by the T&E team as a means to advance research
appropriately.

From a linguistic perspective, a number of parameters that
could potentially affect system performance may immedi-
ately come to mind, to include both typological features of
the languages such as phonetic inventory, morphological
complexity, and word order, to sociolinguistic features to
include dialectology, script standardization, literacy and
diglossia. MATERIAL’s T&E Team collected linguistic
statistics on the candidate languages, focusing on features
that were assumed to have a higher chance of correlation
with Natural Language Processing (NLP) performance.
For a sample of these kinds of linguistic variables, selected
parameter values from the World Atlas of Language
Structures (WALS) for the MATERIAL languages released
so far are given in Table 1 with their numeric WALS
Feature value (Dryer and Haspelmath, 2013). Parameters
considered to be more challenging for NLP applications in
the table are shown in bold.

For some linguistic features, typological resources do
exist that enable us to quantify differences between or
across languages. The URIEL knowledge base and its
lang2vec utility, for example, provide vector identifications
of languages measured from a variety of parameters taken
from typological, geographical and phylogenetic databases
to aid in NLP correlational analysis (Littell et al., 2017).
Using lang2vec, vectors representing multiple syntactic
features (often binary), manually drawn from WALS, and

the Syntactic Structures of the World Languages (Collins
and Kayne, 2011) can be compared across languages to
compute a relative distance between any set of languages
for an available amalgamation of categories. While such
vector values may appear to be helpful in differentiating
languages by their features, some caveats should be noted.
First, no weighting mechanism is introduced to calculate
the vector; all categories, regardless of their potential effect
on NLP applications are treated equally. Furthermore, not
all languages in the collection are represented equally for
all the typological dimensions measured. Some features,
in fact, were predicted from typological inference and
genetic relationships. Nevertheless, we felt a conglomerate
distance measure derived from a wide variety of linguistic
categories was worth investigating. Table 2 exemplifies the
lang2vec tool’s distance calculations between English and
the MATERIAL languages for four dimensions: phono-
logical features, syntactic features, a compound value of
the product of phonological and syntactic distance, and
phonetic inventory.

Because Automatic Speech Recognition (ASR) was an
integral part of the program, the T&E Team paid con-
siderable attention to phonological features and phonetic
inventories of the languages they chose to roll out. Multiple
resources were available to capture phonetic and phono-
logical properties, then relay them to the performing teams
with each language via a document entitled “Language
Specific Design Document”, jointly authored by CASL
and the data collector Appen Butler Hill. To contrast the
specific MATERIAL languages for this paper, we counted
three inventories as shown in Table 3: the number of
consonants, number of vowels, and the number of seg-
ments (composed of the number of consonants, vowels and
tones). These measures were extracted from the Phoible
database which provides online search through an intuitive
interface (Moran and McCloy, 2019). Because no single
database provides complete coverage of the languages
for which phonetic inventories have been documented,
Phoible contains multiple databases that often conflict with
each other in their counts. Where differing counts in the
Phoible database were encountered, the values cited in the
UCLA Phonological Segment Inventory Database took
precedence, followed by the Stanford Phonology Archive.

4. The Baseline Systems
To relate the linguistic features to current program
progress, we will introduce results for several baseline sys-
tems contributing to the CLIR pipeline, as well as the CLIR
system itself. These rudimentary systems were produced
with minimal training data, often just the program build
pack and other noted, publicly available low-hanging-fruit
resources. Development for the program parameters was
also minimal. Table 4 reports the component technology
baselines in terms of BLEU (for machine translation) and
WER (for speech recognition) calculated for the MATE-
RIAL Analysis Set. For machine translation the following
baselines were reported: a phrase based statistical (PBMT)
system trained on the MATERIAL Build Pack augmented
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WALS Feature, # Tagalog Swahili Somali Lithuanian Bulgarian Pashto
Consonants, 1A Mod Small Mod Large Avg Large Avg Mod Large
Vowel Quality, 2A Avg (5-6) Avg (5-6) Large (7-14) Avg (5-6) Avg (5-6) Avg (5-6)
Syllable Structure, 12A Mod Complex Simple Mod Complex Complex Complex Complex
Uncommon Consonants, 19A None th sounds Pharyngeals None None None
Case, 49A None None 3 6-7 No 3
Word Order, 81A VSO SVO SOV SVO SVO SOV

Table 1: WALS Parameters for the MATERIAL languages released so far.

Language Distance Calculations from English
Phon. Syn. Phon * Syn Inventory

TGL 0.3433 0.66 0.226578 0.461
SWA 0.2736 0.71 0.194256 0.484
SOM 0.4816 0.62 0.298592 0.465
LIT 0.3498 0.68 0.237864 0.469
BUL 0.2804 0.48 0.134592 0.521
PUS 0.5687 0.57 0.324159 0.598

Table 2: Lang2Vec values for chosen linguistic attributes
(phonological, syntactic).

Lang. Seg-
ments

Conso-
nants

Vow-
els

Syllable
Structure

TGL 23 18 5 Moderately
Complex

SWA 36 31 5 Simple
SOM 32 22 10 Moderately

Complex
LIT 52 36 16 Complex
BUL 42 36 6 Complex
PUS 38 31 7 Complex

Table 3: Phonetic Inventories from Phoible.

with the Long Now Foundation’s PanLex lexicon available
at panlex.org, and three neural MT (NMT) systems trained
on the MATERIAL Build Pack with PanLex (NMT),
with additional engines trained on additional in-language
data available from a web harvest (NMT-Mono), and a
third NMT engine that also includes training data from
additional, often related, languages (NMT-Multi).

Model TGL SWA SOM LIT BUL PUS
MT Baselines (BLEU)

PBMT 33.0 22.8 17.3 17.6 32.3 13.3
NMT 27.9 23.6 14.7 19.5 33.3 N/A
NMT-
Mono

N/A N/A N/A 29.8 43.1 12.6

NMT-
Multi

38.7 35.4 22.3 30.2 43.2 17.5

Speech Recognition Baselines (WER)
CNN-
LSTM

46.6 44.3 60.6 47.9 40.0 42.8

CNN-
LSTM+

33.9 33.7 49.4 23.4 21.3 39.9

Table 4: MT and ASR Baselines.

The ASR baselines reported involve a CNN Long Short-
Term Memory Network (CNN-LSTM) system trained
on MATERIAL Audio Build data and 1500 hours from
several languages, including languages released in the
Babel program, English and Arabic. The CNN-LSTM+
model cited also includes an expanded model and lexicon
generated from a web text harvest and lexicon which
significantly decreased the Out-of-Vocabulary (OOV) rate
and improved WER scores.

The CLIR baselines detailed in Table 5 reflect the AQWV
results from the MATERIAL Analysis Set, with separate
numbers provided for retrieval on text vs. speech, pre-
sented as Text / Speech. For the first three languages of the
program, Tagalog, Swahili and Somali, the low resource
conditions were augmented with a web harvest that include
Panlex and data from DARPA’s LORELEI program. These
additional resources were incrementally included in the
CLIR systems for Lithuanian, Bulgarian, and were not
present in Pashto.

5. Correlates of Performance
Because ASR systems for the MATERIAL languages were
trained with multilingual features without regard to En-
glish, we initially only investigated what we considered to
be potential correlations between the syntactic vectors with
two program tasks that would require English language
transfer: machine translation (via BLEU) and CLIR (via
AQWV). We found no strong correlation between the En-
glish syntactic distance vectors and the MT task measured
by BLEU (NMT r(4) = −.09, PBMT r(4) = −.22), see
Figure 1, or the CLIR Task measured by AQWV (Text
r(4) = .03, Speech r(4) = .20). A number of reasons can
be postulated for why no correlation would exist between
CLIR scores and English distance scores, such as highly
diverse datasets measured for information retrieval per
language, non-uniform averaged relevance probabilities for
the query sets built for each language, and varying degrees
of complexity between the query sets used to evaluate
each language. While the number of queries released per
language was relatively uniform, the composition of query
types was not. More detailed descriptions of the query
typology and datasets can be found in the MATERIAL
Evaluation plan here: https://bit.ly/39cNGoo.

Surprisingly, when we compared MT performance to
phonological distance, we found a strong negative corre-
lation with NMT BLEU r(4) = −.93, p = .008; but not



4

Model Tagalog Swahili Somali Lithuanian Bulgarian Pashto
Baseline - - - 32.0 / 14.5 41.3 / 19.4 47.3 / 38.7
+Paracrawl - - - 60.5 / 22.9 64.6 / 29.9 -
+Paracrawl+Web 59.4 / 57.9 44.8 / 33.0 22.6 / 9.9 66.3 / 63.3 72.9 / 68.8 -

Table 5: CLIR Baselines in terms of AQWV (Text/Speech).

Figure 1: Syntactic Distance from English vs. BLEU

against PBMT performance where r(4) = −.72, p = .106.
To compare MT performance with a more intuitive mea-
sure, we calculated a new compound linguistic measure,
the product of syntactic and phonological distance, where
the negative correlation with NMT and PBMT is more ap-
parent and significant, r(4) = −.95, p = .004. See Table 2.

Figure 2: Phono-syntactic distance with NMT BLEU.

Not surprisingly, exploring the segment counts detailed in
Table 3 to compare with a baseline CNN-LSTM monolin-
gually trained engine yielded no evidence of correlation,
r(4) − .24, p = .642 (Figure 3). Even less surprising was
the observation that the Inventory Distance vector from
English and ASR performance on the CNN-LSTM system
were also not correlated, r(4) = −.53, p = .281. Much
diversity was present in the program’s speech data. The
audio used for evaluation was somewhat consistent for
genre distribution and sampling rates between languages
but not for recording quality, or other critical factors such
as the amount of data with music, dialect diversity in the
collection or the number of speakers recorded.

Categorizing languages with absolute features can be
intriguing theoretically, but most advantageous to the

Figure 3: Segment Inventory vs. CNN-LSTM WER.

performers and the T&E team were quantifiable measures
derived from program corpora. One way, for instance, of
projecting possible lexical coverage problems would be to
calculate OOV rates existing between development and test
partitions of the IARPA released training data. Languages
with higher OOV rates may presumably have lexical gaps
in text and possibly, transcription anomalies in speech.
Table 6 shows OOV counts calculated from the BBN team,
to include both IARPA-provided corpora and their harvest.

Lang. Text Speech
Parallel
training
(words)

%
OOV

ASR
Training
(hours)

%
OOV

TGL 1,950k 4.3 128 5.5
SWA 1,738k 5.0 68 12.7
SOM 2,278k 13.7 48 18.0
LIT 18,939k 3.7 66 2.6
BUL 25,984k 1.5 41 1.4

Table 6: OOV rates calculated by training partition.

The text OOV rates did indeed correlate with the per-
formance of the NMT engine trained with multilingual
data, perhaps as a function of the effectiveness of each
language’s data harvest of differing sizes to lower the OOV
rates, r(3) = −.87, p = .005. Likewise, the LSTM+ ASR
engine performance correlates to the OOV rates observed
in speech, r(3) = .93, p = .022. See Figures 4 and 5.

For seeding machine translation development, IARPA
provided training data for each language consisting of
sentence-aligned bitexts from multiple news sources. To
maximize diversity of the rather homogeneous collec-
tion, no more than five sentences were taken from the
same article. Table 7 provides the word counts for these
training corpora, along with translation ratios (foreign
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Language # Words # Unique
Words

# Translated
Words

# Unique Trans-
lated Words

Unique Word
Ratio

Translation
Ratio

SWA 718562 55814 807766 31455 0.07767 0.88957
TGL 782525 50903 809547 30114 0.06505 0.96662
SOM 734132 73941 758337 21935 0.10072 0.96808
BUL 723042 71404 817910 35025 0.09875 0.88401
LIT 607274 91809 834541 30821 0.15118 0.72767
PUS 975595 59815 809597 28026 0.06131 1.20504

Table 7: MATERIAL MT Training Data Statistics.

Figure 4: ASR performance as correlated to text OOV.

Figure 5: ASR performance as correlated to speech OOV.

words/English words) and unique word ratios (unique
source words/all source words). We investigated the
unique word ratio as a potential correlate for vocabulary
growth. Higher ratios indicating larger vocabulary expan-
sion may derive from a variety of factors, such as lack
of orthographic standards, segmentation anomalies, or
increased morphological complexity. There was a weak
negative correlation between the NMT Multilingual BLEU
result and the unique word ratio, r(4) = .73, p = .101.

Comparing baseline BLEU scores against the unique
word ratios at the bitext size of 800K foreign language
words offered slight evidence of correlation for NMT
r(4) = −.73, p = .101 but not for PBMT performance,
BLEU r(4) = −.48, p = .339. Likewise, no correlation
was found between BLEU scores and vocabulary size in
a smaller speech dataset of 80K words shown in Table 8,
PBMT r(4) = .06, t = .911, NMT r(4) = .36, t = .489.

Lang. Vocabulary size at
80K words (K words)

OOV(%) with
Acoustic Build

Data
TGL 11.3 13.5
SWA 13.1 14.1
SOM 12.2 15.7
BUL 13.1 13.3
LIT 19.4 21.3
PUS 7.2 6.0

Table 8: Vocabulary statistics from the Speech Build packs.

6. Conclusion

From the IARPA MATERIAL experience, choosing lan-
guages by linguistic parameters helps to ensure parametric
diversity, critical to our ability to develop language-
independent CLIR solutions in low resource conditions,
a fundamental question posed by the program. Certain
typological parameters we may assume to be tightly linked
to CLIR results often have no correlation with the actual
performance of the NLP applications to which the param-
eters would seem intuitively relevant. Discerning which
linguistic parameters correlated with overall performance
enabled IARPA to evaluate CLIR progress when different
languages were measured. Some parameters were also
a significant factor for Performing Teams to determine
the most effective CLIR pipeline design, customized to
handle language-specific properties deemed necessary to
address. These pipelines, as well as data collection and
use strategies, differed between teams and languages, the
details of which are beyond the scope of this paper.

We have shown, albeit with a relatively small sample
of diverse languages and only using immature baseline
systems, that amalgamate typological distance vectors
between the MATERIAL languages and English quite
unexpectedly and counter-intuitively did correlate with MT
BLEU scores, but not AQWV or WER measures.

We suggest that when choosing languages to design or
evaluate an NLP research program, ample attention is paid
to the language dimension as measured by the properties
of the data used for both training, development and
evaluation, as their correlation with performance is likely
to exceed that of typological parameters presumed to be
critical from a linguistic perspective.
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