

Spatiotemporal Models of Brain Sensemaking

Juyang (John) Weng and Matt D. Luciw Embodied Intelligence Laboratory Michigan State University East Lansing, MI 48824 USA

Areas of Research Interest

- Grown from brain inspired artificial intelligence:
 - ~20 years of cross-disciplinary research
 - Cresceptron, SHOSLIF, HDR, SASE, MILN, WWN
- Brain-like sensemaking and reasoning:
 - It is well known that
 - symbolic brain-like models are brittle when they do not fit the complex dynamic world
 - numeric connectionist models lack capabilities to reason well
 - We recently discovered mechanisms based on which brain as numeric networks make sense and reason
 - applicable to a wide variety of information types, sensory to text
 - both spatial and temporal

MICHIGAN STATE

Unique Capabilities

- An integrated brain model
- Cortex inspired enabling technology:
 - Dually optimal neuronal layers:
 - Spatial optimality: minimum representation error given limited number of computing elements
 - Temporal optimality: best update scheme at every time t, given limited training experience
 - Spatial mechanisms:
 - Most available information are irrelevant
 - Top-down attention: automatically pick up relevant information
 - Temporal mechanisms:
 - Detecting and recognizing spatiotemporal events
 - Automatically handle a series of temporal problems, such as explosion of temporal memory, time warping, temporal attention, temporal abstraction, and temporal action sequences.

Seeking Specific Capabilities

- A system integrator
- A variety of domain data
- Other machine processing techniques

