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Topics 

• Introduction 

– NGC and HFGeo Phase 1 Team 

• Key Algorithms from HFGeo Phase 1 

– Signal Processing Block Diagram 

– Detection (GLRT) with Lightning Mitigation 

– External Calibration 

– Self-Calibration with Modified MUSIC 

– Cross Ambiguity Function 

– Ray Tracing and Associated Databases 

– Geo-Combining 

• Matlab Testbed 

– Operator Data Analysis Tools 



A&TS Systems Capabilities  
40+ Years Experience, SIGINT & Multi-INT Integration, Sensors, Services 

 Located in Northern California (Sacramento/San Jose) 

 Design/development of advanced SIGINT systems 

 HW, SW, Systems, EMI/EMC, Cosite Engineering, SWAP  

 Fabrication, Assembly, Test, Aircraft Integration, Flight Test 

 End to end System/SIGINT Integration 

 Processing, Exploit., Operator Tools, Dissemination (PED) 

 Special Signal Exploitation (XM and special processing)  

 Geolocation, Signal ID, Interference mitigation 

 Antennas and antenna modeling 

 Flight Test at A&TS Sacramento facility 

 Complete life-cycle support – design and development 
through delivery, ILS, field support, and upgrades 
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Antenna/RF Modeling
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Signal Processing Flow Diagram 
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Generalized Likelihood Ratio Detector 

• Binary hypothesis testing 

 

 

• Generalized Likelihood Ratio  

 

 

 

 where p1 = [, ,  ] 

   

The detection statistic is the output power of a beamformer maximized over azimuth, 
elevation, and polarization.  It uses the array to mitigate noise directionality. 
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Detection Data Processing Flow 
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SNR vs. Time Block 

Spectrogram 

Detection Performance Curves 



Calibration using External Source 

• Estimate relative gain and phase offsets for each antenna element 
at a given frequency from a source at known position 

• Assume simple manifold error model 

– Complex receiver channel gains (independent of direction) 

– Manifold correction can be estimated from one or more calibration signals if present 

• Conceptual algorithm with single calibration source 

– Step 1: Look up manifold vector 

– Step 2: Obtain signal vector from calibration data 

– Step 3: Compute manifold correction 
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Calibration Summary and Conclusions 

• Calibration data such as from the whip significantly improves AOA 

estimation  

– AOA estimates of helicopter transmitter improved with whip-based correction 

• Spatially diverse calibration data is useful for manifold analysis and 

leads to valuable insight on system performance 

– Future systems would benefit from static (one-time) and dynamic (during operation) 

calibration to measure and compensate for manifold error that changes over time 
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Direction of Arrival Algorithms 
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Effect of Manifold Error on MUSIC Spectra of 

1-EMVS Array 
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Effect of Manifold Error on MUSIC Spectra of 

3-EMVS Array 
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Self-Calibration Algorithm 

• Self-Cal algorithm jointly solves for both angle of arrival and array 

manifold error correction 

– Assumes a parametric model for manifold error 

 

• Algorithm uses a fixed-point iteration in two steps 

– Estimate the azimuth and elevation angles, given array manifold error correction 

• Find peaks of the MUSIC spectrum 

– Estimate for the array manifold error correction, given the angles of arrival 

• Solve eigenvalue problem 

• Each step has a closed form solution; no search is required 
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Blind Self calibration with Four Unknown Signals 

Phase error = 25 degrees, Amplitude error = 1.5 dB 
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Example continued 
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Self-calibration applied to GFI data 
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MUSIC spectrum   5 Iterations of self-calibration   15 Iterations of self-calibration   

Self calibration iterations increase the heights, sharpness, and resolvability of MUSIC peaks. 



CAF Processing for AoA Estimation Overview 

1. Compute Cross Ambiguity Function (CAF) at 
each antenna 

– Compute against reference waveform or arbitrary 
antenna element (blind) 

2. Locate TDOA/FDOA points at which to 
construct signal vectors 

– Find “peaks” in the CAF spectra 

– For each peak, compile entries across antenna 
elements into signal vector, vk 

3. Estimate spatial parameters associated with 
each signal vector, vk 

– Compute spatial spectrum by “beamforming DF”,  
matching signal vector to manifold 

4. Estimate (optionally) self-calibration manifold 
correction 

– Iterate between steps 3 and 4 to improve spatial 
estimates 

5. Report signal parameters 

– TDOA, FDOA, azimuth, elevation, polarization 
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Blind CAF Processing Simulation 

19 

Simulation:  2 modes of LFMCW (RADAR) waveform 
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CAF for Skywave Mode Association 

• CAF Processing 

– Enables the association of received modes to 

independent source signals 

– Estimates relative time and Doppler/frequency 

offsets between modes of the same signal 

– Provides frequency and time shifts necessary for 

combining the received modes of each source signal 

after beamformer isolation and recovery to realize 

diversity gain 

– Provides insight into performance of DOA estimates 

and MVDR beamformer performance 
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CAF Processing 

Signal Combining 

MVDR Beamformer 

DOA Estimation 

GFI Data / Simulated Data 

Az, El TDOA/FDOA SINAD 



Backward Ray Tracing 

and Geo-Combining 
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Backward Ray Tracing 

• NGIS ray tracing code -- advances the state of the art 

– Different ray tracing software often produces different results depending on algorithm sophistication 

• Innovations include: 

– Eliminates singularities by using new, mathematically rigorous solution of the Haselgrove equations 

– Coded to run on GPU giving fast 3D ray tracing 

• 1000s of 3D rays per second (1 ray/ms) vs. typical speed of ~2 min/3D ray for Proplab-Pro 

– Incorporates highly accurate IGRF geomagnetic field model 

• More accurate magneto-ionic splitting and tracing of O/X modes 

– Incorporates high resolution Earth terrain elevation data for accurate ground bounce direction 

– Incorporates any gridded ionospheric model or database 

• IRI, GAIM, other models, or a combination of models 

– Northrop Grumman scientists are leading research on ionosphere understanding and HF radio wave 
propagation phenomenology (American Geophysical Union 2014 Fall meeting session – Advances in 
Ionospheric Forecasting) 

22 
Advanced ray tracing enables improved signal path and characterization analysis.  
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Geo-Combining Algorithm 

Ray tracing algorithm takes in mode information 

with median arrival angles and covariance 

matrices and outputs probable transmitter 

locations 

Multiple hop information is calculated 

for several modes.  PDFs combined 

through either weighted sum or 

weighted product (user choice).  

The “tightest” hop/mode combination output is the 

max likelihood function value for source location   

Refines emitter location estimates by combining candidate locations generated from multiple 
received O and X modes from all arriving paths (E, F1, F2, ducts, etc.). 



Operator Data Analysis Tools 



Data Viewer 

Spectrogram and Quick-Look Spatial Processing 
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Overview/Multi-Viewer with Detailed 
Spectrogram Plotting Tools 
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Detailed Spectrogram 
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