OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

Babel – Addressing the Language Deluge

LEADING INTELLIGENCE INTEGRATION

The overall classification of this briefing is UNCLASSIFIED

Mary P. Harper Incisive Analysis Office, IARPA Babel Program Overview

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

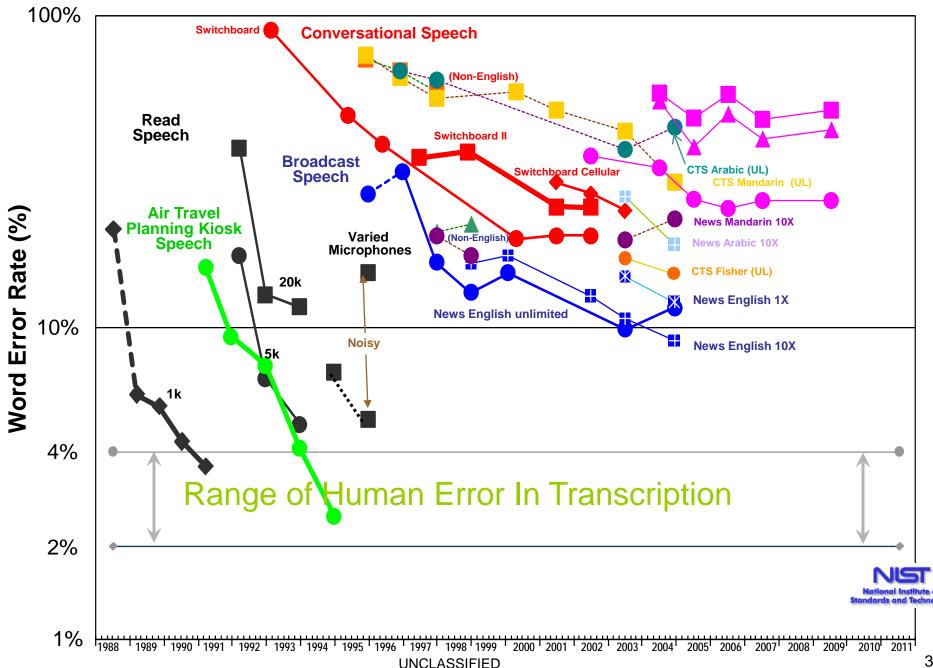
INTELLIGENCE

Babel – Addressing the Language Deluge

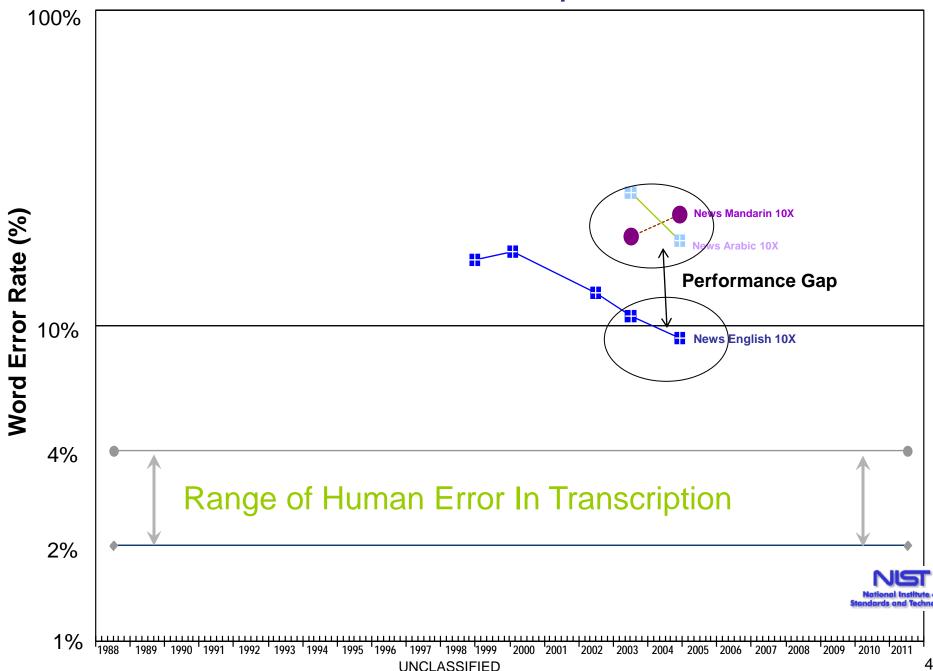
INTEGRATION

<u>Goal</u>:

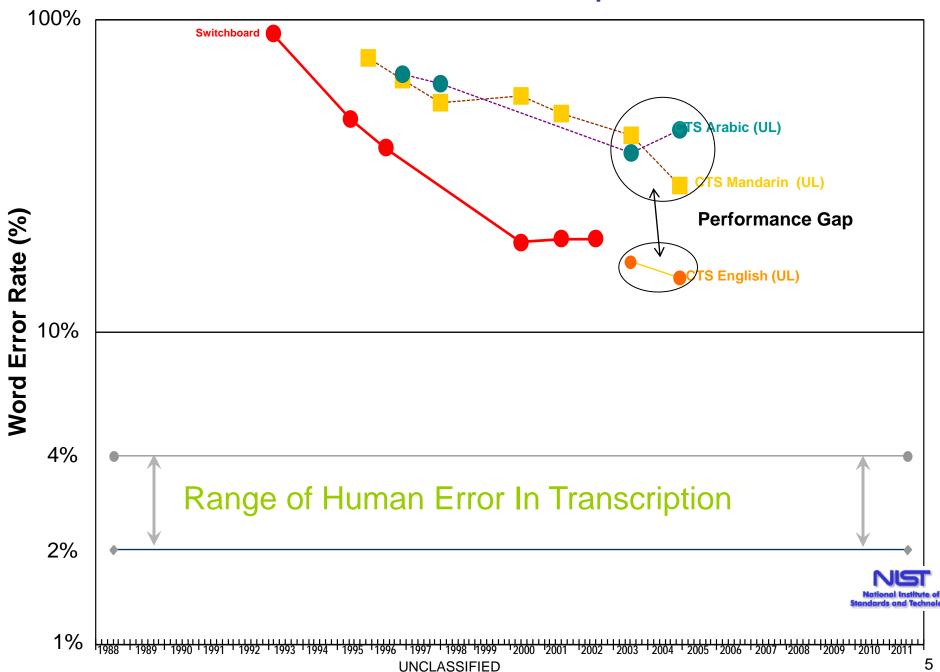
• Develop agile and robust speech technology that:


LEADING

- can be rapidly applied to any human language
- will provide effective keyword search capability for analysts to efficiently examine massive amounts of real-world recorded speech


State-of-the-Art/Practice:

- 7,000+ languages, 330 have 1M+ speakers, but only a few studied
- Today's systems were originally developed for English on fairly clean speech with **significantly lower performance** when the technology is:
 - extended to other languages
 - applied to speech collected in real-world conditions
- System development time for a new language takes months to years.


UNCLASSIFIED NIST Benchmark Speech Test History – May '09

NIST Conversational Speech

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LIGENCE

INTEGRATION

Example Use Case

- Thousands of hours of speech is acquired in a language of emerging importance to the IC.
- Few IC analysts have the ability to understand the language.
- There is no existing speech technology for the language.
- We must rapidly develop effective triage capabilities for the analysts.

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Approach

- Broad language portfolio:
 - Languages from a variety of language families (e.g., Afro-Asiatic, Niger-Congo, Sino-Tibetan, Austronesian, Dravidian, Altaic)
 - Mixed language typology (i.e., with different phonotactic, morphological, syntactic characteristics)
- Researchers will:
 - work with development languages to create new methods
 - be evaluated annually on a surprise language with development time and training size constraints
- Annual evaluation:
 - On the set of development languages and the surprise language
 - Progress will be measured using:
 - <u>NIST Spoken Term Detection Evaluation</u> (see <u>http://www.itl.nist.gov/iad/mig//tests/std/2006/index.html</u>)
 - Word Error Rate (WER) when appropriate for the technology

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

INTELLIGENCE

Language Packs

INTEGRATION

- Each language will be provided to researchers in a "pack" that will contain speech data and language information
- Speech data may include:

LEADING

- Calls made from quiet and challenging environments including public places (bar, restaurant, shopping mall ...), street/roadside, quiet location (home, office ...), moving vehicle (in-car, train, bus ...) with handheld phone or hands-free device.
- Mixed telephony recordings
 - Scripted speech to ensure baseline coverage of the language's phoneme inventory
 - Conversational speech
- Metadata for all recordings (e.g., gender, age, handset type, environment)
- Transcription of conversational audio (the amount depends on program year)
- Language information may include:
 - Description of the language (e.g., dialect regions, phoneme set definitions)
 - Lexicon entries for words appearing in transcribed data

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Program Organization Phase 1 (27 months)

- Provide system build packs for a broad selection of languages of interest to force a general approach.
 - Base Period (15 mos.): 4 language build packs, each with 100% transcription and a pronunciation lexicon for the words in the transcription. Only telephone channel data will be included.
 - Option Period One (12 mos.): 5 language build packs, each with no more than 75% transcription with correspondingly limited pronunciation lexicon. Telephone and non-telephone channels will be included.
- Government evaluation will use key word search metrics to test
 - each development language
 - a surprise language with limited system development time and different training set sizes (e.g., 10 or fewer hours, 80 hours)
 - using data from challenging environments, including some that do not match training environments

INTEGRATION

Program Organization Phase 2 (24 months)

INTELLIGENCE

Provide more limited system build packs for a greater number of languages.

LEADING

- Option Period Two (12 mos.): 6 language build packs, each with no more than 50% transcription with correspondingly limited pronunciation lexicon. Telephone and non-telephone channels will be included.
- Option Period Three (12 mos.): 7 language build packs, each with no more than 50% transcription with correspondingly limited pronunciation lexicon. Telephone and non-telephone channels will be included.
- Government evaluation will use key word search metrics to test
 - each development language
 - a surprise language with limited system development time and different training set sizes (e.g., 10 or fewer hours, 80 hours)
 - using data from challenging environments, including some that do not match training environments

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

INTELLIGENCE

LEADING

Performance Goals

INTEGRATION

	Phase 1		Phase 2	
Year	Base	Option 1	Option 2	Option 3
Transcribed %	100%	≤ 75%	≤ 50%	≤ 50%
Pronunciation Lexicon (transcription coverage)	100%	≤ 75%	$\leq 50\%$	≤ 50%
Language Packs Development+Surprise	4+1	5+1	6+1	7+1
Development Time for Surprise	4 weeks	3 weeks	2 weeks	1 week
Minimum NIST Actual Term Weighted Value (ATWV) ¹	0.3	0.3	0.3	0.3

NOTE: All evaluations will include data from challenging environments. There will also be alternative evaluations with different amounts of transcribed audio.

1. See http://www.itl.nist.gov/iad/mig/tests/std/2006/docs/std06-evalplan-v10.pdf

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING

Before and After Babel

INTELLIGENCE INTEGRATION

	Today	After Babel	
Language Coverage	Limited	Any spoken human language	
Resources	100's-1000's of hours of transcribed training data	Limited amounts of transcribed data	
Channel	Homogeneous	Mixed	
Time to develop	Months to years	1 week	

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

Program Roles and Responsibilities

INTELLIGENCE INTEGRATION

- Performer R&D
 - In Scope:
 - Multilingual speech modeling

LEADING

- Novel use of machine learning, data resource gathering, linguistics, etc.
- Computational methods to limit running time and memory
- Keyword search
- Out of Scope:
 - Human user interface
 - Machine translation
- Government Support
 - Government Furnished Information (GFI):
 - Training data for diverse set of development languages
 - Development data to measure interim progress
 - Evaluation data
 - Testing and Evaluation:
 - Evaluation framework to measure performer progress on development languages
 - Evaluation framework to measure performer progress on an annual surprise language

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Questions?

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE LLIGENCE

INTEGRATI

NIST Spoken Term Detection Evaluation

- Two methods used in 2006 for assessing performance:
 - Value function
 - An application model that assigns value to correct output and negative value for incorrect output
 - A weighted linear combination of Missed Detection and False Alarm Probabilities
 - Detection Error Tradeoff (DET) curve
 - A graphical representation of the tradeoff between **Missed Detections and False Alarms**

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

INTEGRATION

C/V weights the

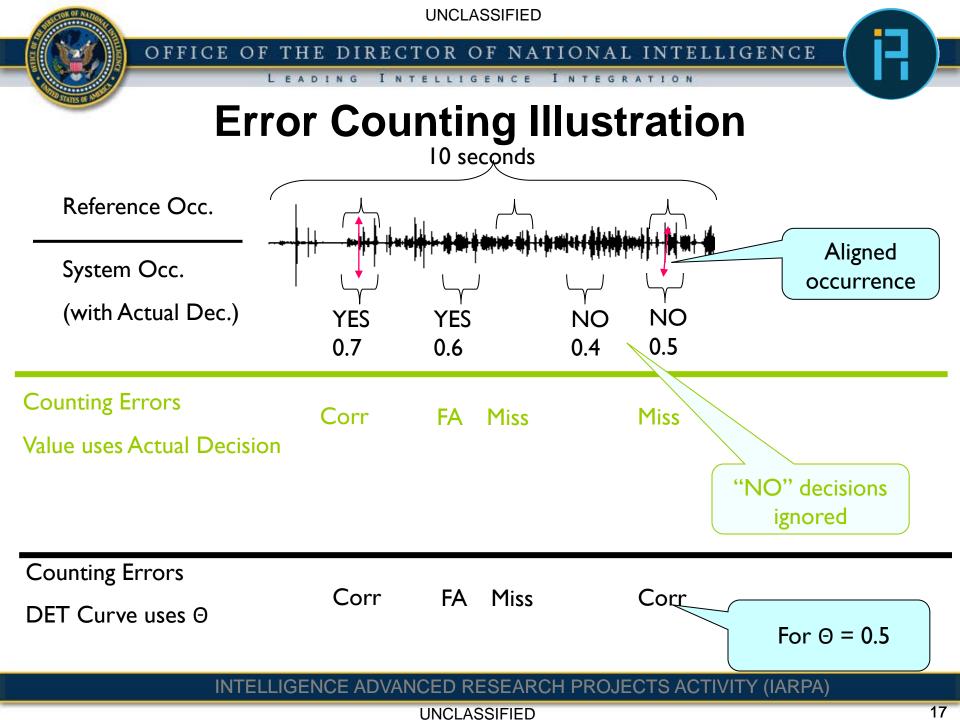
error types

Adjusts for the

priors

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE LLIGENCE

TE


Value Functions

Value assigned to correct and incorrect output

EADIN

- Value = 1 is perfect output
- Value = 0 is the score for no output
- Value < 0 is possible
- Term Weighted Value (TWV)
 - Restricted to terms with reference occurrences
 - V of 1.0 is the value (benefit) of a correct response
 - C of 0.1 is the cost of an incorrect response $\operatorname{Value}_{\mathrm{T}}(\theta) = 1 - \operatorname{average}_{\operatorname{term}} \left\{ \operatorname{P}_{\operatorname{Miss}}(\operatorname{term}, \theta) + \frac{C}{V} (\operatorname{P}_{\operatorname{term}}^{-1} - 1) \cdot \operatorname{P}_{\operatorname{FA}}(\operatorname{term}, \theta) \right\}$
- Choosing Θ
 - Developers choose decision threshold for their "Actual Decisions" to optimize term-weighted value: All "YES" system occurrences
 - Called the "Actual Term Weighted Value" (ATWV)
 - The evaluation code searches for the system's optimum decision score threshold
 - Called the "Maximum Term Weighted Value" (MTWV)

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

INTELLIGENCE

Estimates of Error Rates

INTEGRATION

- Given the aligned occurrence, compute the following for each term:
 - Probability of Missed Detections
 - $P_{Miss}(term,\theta) = 1 N_{correct}(term,\theta)/N_{True}(term,\theta)$
 - not defined when $N_{True}(term, \theta) = 0$

ING

- Probability of False Alarms
 - $P_{FA}(term,\theta) = N_{Spurious}(term,\theta)/N_{NT}(term,\theta)$
- NT is the number of Non-Target trials
 - But this is NOT countable so used an Estimate
 - N_{NT}(term,θ) = TrialsPerSecond * SpeechDuration -N_{True}(term,θ)
 - TrialsPerSecond arbitrarily set to 1 for all languages
 - In hind sight, they would have used False Alarm rate (e.g., False Alarms per hour).
- Θ is a decision criteria that is set to differentiate likely vs. unlikely putative term occurrences

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

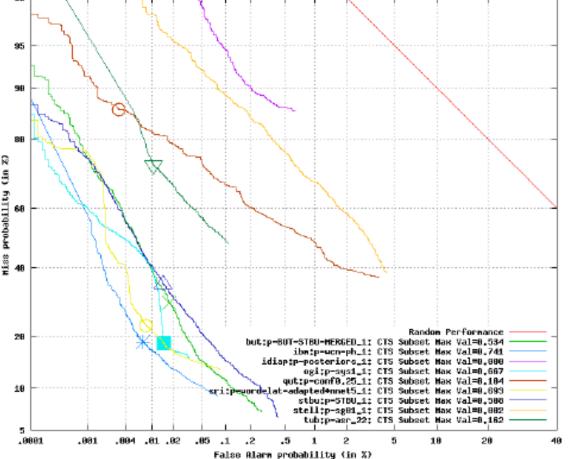
LEADING INTELLIGENCE INTEGRATION

Detection Error Tradeoff (DET) Curves

Term Wtd. Detection Error Tradeoff Curve 98 Random Performance Max Val=0.656=(PFa=0.000158, PM=0.1862, Scr=-0.595) +/- 2 Standard Error 95 90 +/- 2 Std. Error 80 probability (in %) Curves 60 Better Miss 20 10 5 000 05 1 2 5 10 20 40 babilitu (in %) Maximum Term-Weighted Value (MTWV)

- Plot of P_{Miss} vs P_{FA}
- Axis is warped to the normal deviate scale
- Term-Weighted DET
 Curve
 - Created by computing term-averaged P_{Miss} and P_{FA} over the full range of a system's decision score space
 - Confidence estimates used for confidence curves

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

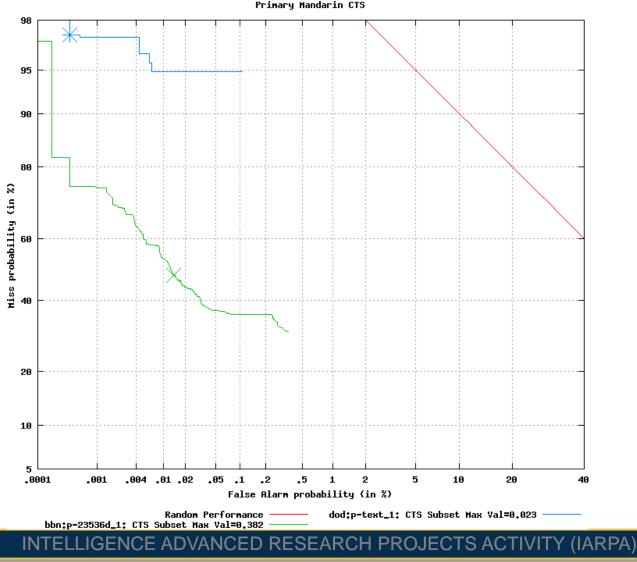

INTELLIGENCE INTEGRATION

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING

English Conversational

Primary English Systems: CTS Subset



INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Mandarin Conversational

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Non-Diacritized Arabic Conversational

Primary Arabic Systems - Non-Diacritized : CTS Subset 98 95 90 80 2 Miss probability (in 60 40 20 10 Randon Performance bbn:p-23640d-nondia_1: CTS Subset Max Val=0.344 +/- 2 Standard Error 5 .2 .5 2 5 10 20 .0001 .004 .01 .02 .05 .1 1 40 .001 False Alarm probability (in %) INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

INTELLIGENCE

LEADING

NIST Evaluation Take-Aways

- Focus more on performance across genre rather than language
- Few researchers participated in the non-English
- Trade-offs between Phoneme and Word approaches

	Phoneme	Word
Pros	 Smaller amounts of training data needed (~20 hrs) No vocabulary constraints Compact models Faster Recognition (50xFTRT) 	 Higher precision (fewer false alarms) Higher recognition accuracy Faster search
Cons	 Lower precision (many false alarms) Lower recognition accuracy Slower search 	 Larger amounts of training data needed Finite vocabulary Large models Slower Recognition (10xFTRT)

INTEGRATION

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Word Error Rate

- Word Error Rate (WER) is calculated using SCLITE on system (sys) and reference (ref) transcripts.
- Errors: insertions (I), deletions (D), substitutions (S)
- WER = (I+D+S)/# ref words

ref: it is hard to recognize speech sys: it's hard to wreck a nice beach. **ERRORS**: S S

WER = 4/6 = 66.67%

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)