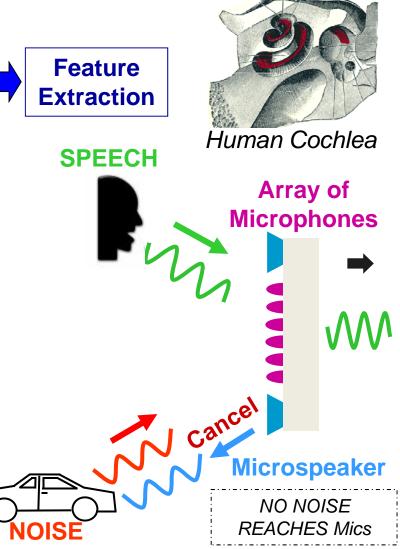

Organization: *University of Southern California*Lead investigator: *Eun Sok Kim*

- Research areas of interest
 - acoustic microelectromechanical systems (MEMS)
 - microphone, microphone array
 - Q-enhanced resonant microphone
 - Microspeaker
- Type of research group we seek to join:
 - Speech recognition group that is interested in
 - hardware-enhanced speech recognition
 - acoustic filter banks
 - active noise cancellation

Introduction, Motivation


Automatic Speech Recognition (ASR):

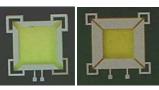
- Microphone Array
 - Novel Sensor Increases Functionality
 - "Physical Filtering" → Eliminate digital filter
 - Directional Noise-Source Identification
- Active Noise Cancellation
 - Eliminate noise before sensor
 - → Further reduction in signal processing
 - Requires On-chip sound source

Microspeaker for Noise Cancellation

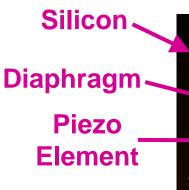
Operational Principle and Design

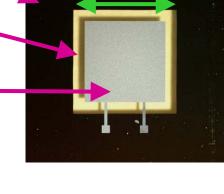
- Piezoelectric Unimorph
 - Voltage ⇔ Strain
 - Support Layer converts lateral strain into vertical displacement
 - Diaphragm converts displacement into sound
- Design Considerations
 - Diaphragm Residual Stress

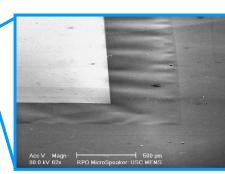
Compressive Stress

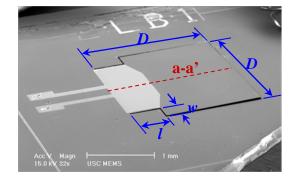

Compliant Diaphragm

High acoustic Output

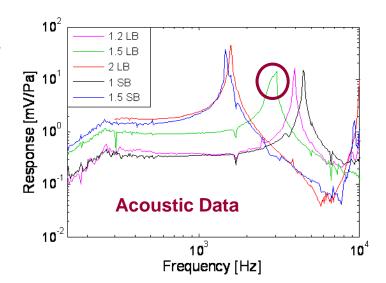

- Trade-off: Strength vs Output
- Electrode pattern
 - Strain Distribution

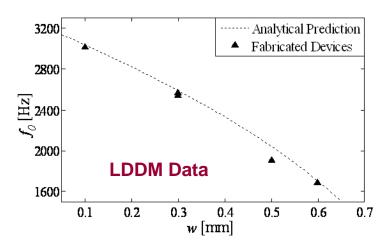






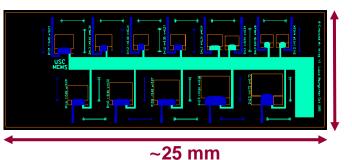
Microphone Built on Piezocantilever

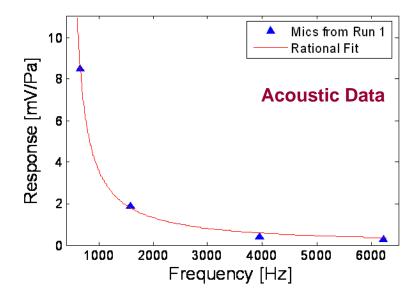

- Rayleigh Method accounting for thickness of piezo group
 - Normalize layer thicknesses based on stiffness → Effective thickness = d_{ef}

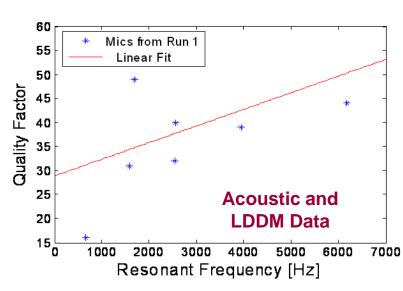


$$d_{ef} = \sum_{i} \frac{E_i}{c_{11}^{(Si)}} t_i$$

- Many devices tested with LDDM only
 - Much faster
 - Still can get Q and f_0
- Some anamalous devices not included
 - e.g., Device "1.5 LB" above
 - Photoresist strands damp resonance

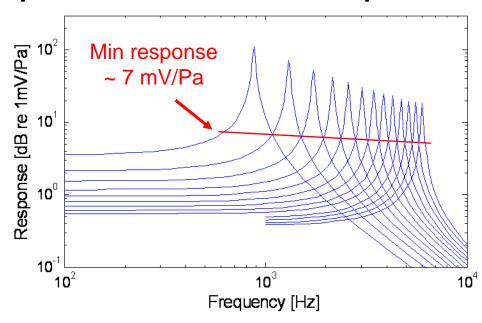


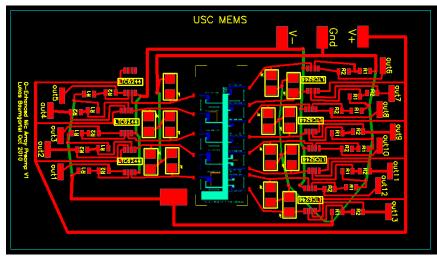



Design of Resonant Microphone Array

~5 mm

- Goal is to span 875 Hz to 6 kHz
 - Somewhat arbitrary but also consider
 - Total Array Size
 - Yield Rate: D < 2.5 mm
 - Number of mics, testing, bonding, etc.
- Extrapolate frequency response from previous runs
- Array is 13 mics
 - Resonant freq. linearly spaced
 - Dimensions of each mic calculated using MATLAB code of Rayleigh Method





Predicted Response and PreAmp

- Array Response
 - Peaks should be more closely spaced
 - Trade-off's from before
 - Fit seven arrays on a half-wafer
 - If frequencies match, will prove concept
- PreAmp PCB:
 - Linear Technologies LTC6244 op amps
 - $R_{in} = 1 T\Omega$
 - C_{in} ~ 3 pF
 - 2 amps/chip
 - Mics have common ground
 - → Half as many wire-bonds

Unique Qualifications and Capabilities

- We can develop
 - a bank of acoustically filtered MEMS microphones that are based on a high quality-factor resonance of a diaphragm
 - MEMS microspeakers to be integrated with MEMS microphones for active noise cancellation for improving SNR.

Contact Information

- Name: Eun Sok Kim
- Title: *Professor and Chair of EE-Electrophysics*
- Organization: University of Southern California
- Email address: eskim@usc.edu
- Phone number: (213) 740-4697
- url: http://mems.usc.edu